References
- ÅMAND L.-E., LECKNER B., ESKILSSON D., TULLIN C. 2006. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge. Fuel 85, 10–11:1313–1322.
- BECK J., MÜLLER R., BRANDENSTEIN J., MATSCHEKO B., MATSCHKE J., UNTERBERGER S., HEIN K.R.G. 2005. The behaviour of phosphorus in flue gases from coal and secondary fuel co-combustion. Fuel 84: 1911–1919.
- BRYERS R. W. 1996. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science 22, 1: 29–120.
- DUNNU G., MAIER J., SCHEFFKNECHT G. 2010. Ash fusibility and compositional data of solid recovered fuels. Fuel 89, 7: 1534–1540.
- EUROPEAN COMMISSION. 2021. Communication from the Commission: ‘Fit for 55’ – Delivering the EU's 2030 Climate Target on the Way to Climate Neutrality. COM(2021) 550 final, Brussels.
- GRAY R., MOORE G. 1974. Burning the sub-bituminous coals of Montana and Wyoming in large utility boilers. ASME Meeting Paper No. 74-WA/FU-1.
- HARDY T., JAKUBIAK M., FILIPOWSKI K. 2019. Prevention of chloride corrosion in biomass boilers by means of SO3 injection. Rynek Energii 2, 14: 88–95.
- HARTMAN M., SVOBODA K., POHOŘELÝ M., TRNKA O. 2005. Combustion of dried sewage sludge in a fluidized-bed reactor. Industrial & Engineering Chemistry Research 44, 10: 3432–3441.
- HE J., XIONG W., ZHANG W., LI W., LONG K. 2016. Study on the high-temperature corrosion behavior of superheater steels of biomass-fired boiler in molten alkali salts' mixtures. Advances in Mechanical Engineering 8, 11: 1–9.
- KACPRZAK M., NECZAJ E., FIJAŁKOWSKI K., GROBELAK A., GROSSER A., WORWAG M., RORAT A., BRATTEBO H., ALMÅS Å, SINGH B. 2017. Sewage sludge disposal strategies for sustainable development. Environmental Research 156: 39–46.
- GARCIA-MARAVER A., MATA-SANCHEZ J., CARPIO M, PEREZ-JIMENEZ J.A. 2017. Critical review of predictive coefficients for biomass ash deposition tendency. Journal of the Energy Institute 90, 2: 214–228.
- LACHMAN J., BALÁŠ M., LISÝ M., LISÁ H., MILČÁK P., ELBL P. 2021. An overview of slagging and fouling indicators and their applicability to biomass fuels. Fuel Processing Technology 217: 106804.
- LÓPEZ C., UNTERBERGER S., MAIER J., HEIN K. R. G. 2003. Overview of actual methods for characterization of ash deposition. In Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, ECI Symposium Series.
https://dc.engconfintl.org/heatexchanger/38 - MAGDZIARZ A., DALAI A.K., KOZIŃSKI J. A. 2016. Chemical composition, character and reactivity of renewable fuel ashes. Fuel 176: 135–145.
- MAJ I., KALISZ S., SZYMAJDA A., ŁASKA G., GOŁOMBEK K. 2021. The influence of cow dung and mixed straw ashes on steel corrosion. Renewable Energy 177: 1198–1211.
- MAJ I., KALISZ S., CIUKAJ S. 2022. Properties of animal-origin ash – a valuable material for circular economy. Energies 15: 1274.
- MAJ I., KALISZ S., WEJKOWSKI R., PRONOBIS M., GOŁOMBEK K. 2022. High-temperature corrosion in a multifuel circulating fluidized bed (CFB) boiler co-firing refuse derived fuel (RDF) and hard coal. Fuel 324: 124749.
- MCLENNAN A. R., BRYANT G. W., BAILEY C. W., STANMORE B. R., WALL T. F. 2000. Index for iron-based slagging for pulverized coal firing in oxidizing and reducing conditions. Energy & Fuels 14, 2: 349–354.
- MINISTRY OF CLIMATE AND ENVIRONMENT. 2022. National Waste Management Plan 2022 (KPGO 2022). Warsaw.
- MLONKA-MĘDRALA A., MAGDZIARZ A., GAJEK M., NOWIŃSKA K., NOWAK W. 2020. Alkali metals association in biomass and their impact on ash-related issues. Fuel 267: 117117.
- NIELSEN H. P., FRANDSEN F. J., DAM-JOHANSEN K., BAXTER L. L. 2000. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Progress in Energy and Combustion Science 26, 3: 283–298.
- NIELSEN H. P., FRANDSEN, F. J., DAM-JOHANSEN K. 1999. Lab-scale investigations of high-temperature corrosion in KCl-rich deposits. Energy & Fuels 13, 6: 1214–1221.
- OSTOJSKI A., SWINARSKI M. 2018. Znaczenie potencjału energetycznego osadów ściekowych w aspekcie gospodarki o obiegu zamkniętym – przykład oczyszczalni w Gdańsku [The importance of the energy potential of sewage sludge in the aspect of the circular economy – the example of a treatment plant in Gdansk]. Rocznik Ochrona Środowiska 10: 1252–1268.
- PAJĄK T. 2007. Wybrane zagadnienia spalania i współspalania komunalnych osadów ściekowych [Selected issues of incineration and co-incineration of municipal sewage sludge]. Gaz, Woda i Technika Sanitarna 1: 26–29.
- PŁONKA I., KUDLEK E., PIECZYKOLAN B. 2025. Municipal sewage sludge disposal in the Republic of Poland. Applied Sciences 15, 6: 3375.
- PRONOBIS M. 2005. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass and Bioenergy 28: 375–383.
- Regulation (EU) 2020/852 on the establishment of a framework to facilitate sustainable investment (EU Taxonomy) (L 198/13, Official Journal of the European Union 18.6.2020).
- SALVA J., SEČKÁR M., SCHWARZ M., SAMEŠOVÁ D., MORDÁČOVÁ M., PONIŠT J., VEVERKOVÁ D. 2025. Analysis of the current state of sewage sludge treatment from the perspective of current European directives. Environmental Sciences Europe, 37: 59.
- SHARP W. B. A. S. 2010. Superheater corrosion in biomass boilers: Today's science and technology. ORNL Report ORNL/TM-2011/399.
- SHI Y., LI M., WEN J., YANG Y., CUI F., ZENG J. 2021. Heat Transfer Efficiency Prediction of Coal-Fired Power Plant Boiler Based on CEEMDAN-NAR Considering Ash Fouling. Energies 14, 13: 4000.
- STATISTICS POLAND (GUS). 2024. Environment 2024: waste management data. Warsaw.
- STELMACH S., WASIELEWSKI R. 2008. Co-combustion of dried sewage sludge and coal in a pulverized coal boiler. Journal of Material Cycles and Waste Management 10: 110–115.
- SWISS FEDERAL COUNCIL. 2003. Ban on the use of sludge as a fertiliser. Swiss Government News Service.
- URCIUOLO M., SOLIMENE R, CHIRONE R., SALATINO P. 2012. Fluidized bed combustion and fragmentation of wet sewage sludge. Experimental Thermal and Fluid Science 43: 97–104.
- WANG L., SKJEVRAK G., HUSTAD J.E., GRØNLI M.G. 2012. Sintering characteristics of sewage sludge ashes at elevated temperatures. Fuel Processing Technology 96: 88–97.
- WERTHER J., OGADA T. 1999. Sewage sludge combustion. Progress in Energy and Combustion Science 25: 55–116.
- WOJCIECHOWSKA M. 2024. Statistical analyses. Statistics Poland, Agriculture and Environment Department, Warsaw, Poland.
- VAMBOL V., KOWALCZYK-JUŚKO A., JÓŹWIAKOWSKI K., MAZUR A., VAMBOL S., KHAN N. A. 2022. Investigation in techniques for using sewage sludge as an energy feedstock: Poland's experience. Ecological Questions 34, 1: 91–98.
- VAN BEEK M. C. 2001. Gas-side fouling in heat-recovery boilers – Impact on overall heat transfer coefficient. Eindhoven University of Technology Report.
- ZHANG Q., LIU H., QIAN Y., XU M., LI W., XU J. 2013. The influence of phosphorus on ash fusion temperature of sludge and coal. Fuel Processing Technology 110: 218–226.
- Directive (EU) 2023/2413 on the promotion of the use of energy from renewable sources (RED III) (Series L, Official Journal of the European Union 31.10.2023).