Have a personal or library account? Click to login
Accuracy of the Copernicus High-Resolution Layer Forest Type (HRL FTY) assessed with domestic NFI sampling plots in Poland Cover

Accuracy of the Copernicus High-Resolution Layer Forest Type (HRL FTY) assessed with domestic NFI sampling plots in Poland

Open Access
|Dec 2023

Abstract

Over the past years, several remote sensing maps of land cover have been produced, but they still exhibit certain differences compared to the real land use that reduce their value for climate and carbon cycle modelling as well as for national estimates of forest carbon stocks and their change. This paper outlines a straightforward framework for evaluating map accuracy and estimating uncertainty in land cover area, specifically for forest-related land cover maps in Poland for the year 2018.

The study compares stratified field-based data from the National Forest Inventory (NFI) with remote sensing data on forest variables, at the pixel level, in order to identify suitable methods for accuracy and area uncertainty estimation. Additionally, the paper introduces and presents a variety of accuracy metrics applicable to assess overall uncertainties in GHG inventories.

The results indicate that the High-Resolution Layer Forest Type (HRL FTY) product (part of the broader Copernicus Land Monitoring Service [CLMS] portfolio), assessed using NFI field-based information, achieved an overall accuracy (OA) of 69.2%. This metric varies among particular nature protection forms, with the highest observed ones in Natura 2000 sites of 70.45%. The primary source of map errors was associated with distinguishing between broad-leaved and coniferous forest areas. Improving future maps necessitates more precise differentiation between species to better support national forest monitoring systems for the purpose of greenhouse gas (GHG) inventories where information on the spatial distribution and variability of forests sources, biodiversity assessment, threat prevention, estimation of carbon content is becoming an important part of the associated reporting system.

DOI: https://doi.org/10.2478/oszn-2023-0016 | Journal eISSN: 2353-8589 | Journal ISSN: 1230-7831
Language: English
Page range: 44 - 61
Published on: Dec 31, 2023
Published by: National Research Institute, Institute of Environmental Protection
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year
Related subjects:

© 2023 Marcin Żaczek, Mariusz Walęzak, Anna Olecka, Sylwia Waśniewska, Anna Paczosa, published by National Research Institute, Institute of Environmental Protection
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.