References
- Akhavian, R., & Behzadan, A. H. (2016). Smartphone-based construction workers‘ activity recognition and classification. Automation in Construction, 71, 198-209. https://doi.org/10.1016/j.autcon.2016.08.015
- Anh, N. T., Tu, N. D., Solanki, V. K., Giang, N. L., Thu, V. H., Son, L. N., . . . Nam, V. T. (2020). Integrating employee value model with churn prediction. International Journal of Sensors Wireless Communications and Control, 10(4), 484-493. https://doi.org/10.2174/2210327910666200213123728
- Ardabili, S., Mosavi, A., Mahmoudi, A., Gundoshmian, T. M., Nosratabadi, S., & Várkonyi-Kóczy, A. R. (2019). Modelling temperature variation of mushroom growing hall using artificial neural networks. Paper presented at the International Conference on Global Research and Education.10.20944/preprints201908.0201.v1
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Chuang, Y.-C., Hu, S.-K., Liou, J. J., & Tzeng, G.-H. (2020). A data-driven MADM model for personnel selection and improvement. Technological and Economic Development of Economy, 26(4), 751-784. http://dx.doi.org/10.3846/tede.2020.1236610.3846/tede.2020.12366
- Colomo-Palacios, R., González-Carrasco, I., López-Cuadrado, J. L., Trigo, A., & Varajao, J. E. (2014). I-Competere: Using applied intelligence in search of competency gaps in software project managers. Information Systems Frontiers, 16(4), 607-625. http://dx.doi.org/10.1007/s10796-012-9369-610.1007/s10796-012-9369-6
- Deb, S. K., Jain, R., & Deb, V. (2018, January). Artificial intelligence―creating automated insights for customer relationship management. In 2018 8th international conference on cloud computing, data science & engineering (Confluence) (pp. 758-764). IEEE. http://dx.doi.org/10.1109/CONFLUENCE.2018.844290010.1109/CONFLUENCE.2018.8442900
- Efron, B., & Hastie, T. (2016). Computer age statistical inference (Vol. 5): Cambridge University Press.10.1017/CBO9781316576533
- Fallucchi, F., Coladangelo, M., Giuliano, R., & William De Luca, E. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 86. https://doi.org/10.3390/computers9040086
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. vol. 1 Springer Series in Statistics. New York.10.1007/978-0-387-21606-5_1
- Giaglis, G. M. (2001). A taxonomy of business process modeling and information systems modeling techniques. International Journal of Flexible Manufacturing Systems, 13(2), 209-228. https://doi.org/10.1023/A:1011139719773
- Illéssy, M., Huszár, Á., & Makó, C. (2021). Technological Development and the Labour Market: How Susceptible Are Jobs to Automation in Hungary in the International Comparison? Societies, 11(3), 93. https://doi.org/10.3390/soc11030093
- Irfan, D., Tang, X., Narayan, V., Mall, P. K., Srivastava, S., & Saravanan, V. (2022). Prediction of Quality Food Sale in Mart Using the AI-Based TOR Method. Journal of Food Quality, 2022. https://doi.org/10.1155/2022/6877520
- Jain, P. K., Jain, M., & Pamula, R. (2020). Explaining and predicting employees’ attrition: a machine learning approach. SN Applied Sciences, 2(4), 1-11. https://doi.org/10.1007/s42452-020-2519-4
- Jayadi, R., Firmantyo, H. M., Dzaka, M. T. J., Suaidy, M. F., & Putra, A. M. (2019). Employee Performance Prediction using Naïve Bayes. International Journal of Advanced Trends in Computer Science and Engineering, 8(6):3031-3035. https://doi.org/10.30534/ijatcse/2020/106912020
- Jebelli, H., Khalili, M. M., Hwang, S., & Lee, S. (2018). A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device. Paper presented at the Construction research congress.10.1061/9780784481288.005
- Jiang, H., Cheng, Y., Yang, J., & Gao, S. (2022). AI-powered chatbot communication with customers: Dialogic interactions, satisfaction, engagement, and customer behavior. Computers in Human Behavior, 134, 107329. https://doi.org/10.1016/j.chb.2022.107329
- Jiangang, D., Huan, Z., Jiuru, S., & Yu, Z. (2022). A Review and Prospects of Customer Behavior under AI Service. Foreign Economics & Management, 44(03), 19-35. https://doi.org/10.16538/j.cnki.fem.20211017.101
- Kaewwiset, T., Temdee, P., & Yooyativong, T. (2021). Employee Classification for Personalized Professional Training Using Machine Learning Techniques and SMOTE. Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, 376-379. https://doi.org/10.1109/ECTIDAMTNCON51128.2021.9425754
- Khayer Zahed, R., Teimouri, H., & Barzoki, A. S. (2021). Designing a model of strategic training system with talent management approach: the case of Iranian National Tax Administration. International Journal of Business Innovation and Research, 24(4). https://doi.org/10.1504/IJBIR.2021.114080
- Khera, S. N., & Divya. (2018). Predictive modelling of employee turnover in Indian IT industry using machine learning techniques. Vision, 23(1), 12-21. https://doi.org/10.1177/0972262918821221
- Leitner-Hanetseder, S., Lehner, O. M., Eisl, C., & Forstenlechner, C. (2021). A profession in transition: Actors, tasks and roles in AI-based accounting. Journal of Applied Accounting Research, 22 (3), 539-556. https://doi.org/10.1108/JAAR-10-2020-0201
- Li, N., Kong, H., Ma, Y., Gong, G., & Huai, W. (2016). Human performance modeling for manufacturing based on an improved KNN algorithm. The International Journal of Advanced Manufacturing Technology, 84(1-4), 473-483. https://doi.org/10.1007/s00170-016-8418-6
- Li, X., Chi, H.-l., Lu, W., Xue, F., Zeng, J., & Li, C. Z. (2021). Federated transfer learning enabled smart work packaging for preserving personal image information of construction worker. Automation in Construction, 128, 103738. https://doi.org/10.1016/j.autcon.2021.103738
- Liu, J., Li, J., Wang, T., & He, R. (2019). Will Your Classmates and Colleagues Affect Your Development in the Workplace: Predicting Employees‘ Growth Based on Interpersonal Environment. Paper presented at the 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (Big-DataService). https://doi.org/10.1109/BigDataService.2019.00016
- Liu, J., Long, Y., Fang, M., He, R., Wang, T., & Chen, G. (2018). Analyzing employee turnover based on job skills. Paper presented at the Proceedings of the International Conference on Data Processing and Applications. https://doi.org/10.1145/3224207.3224209
- Liu, J., Wang, T., Li, J., Huang, J., Yao, F., & He, R. (2019). A Data-driven Analysis of Employee Promotion: The Role of the Position of Organization. Paper presented at the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). https://doi.org/10.1109/SMC.2019.8914449
- Long, Y., Liu, J., Fang, M., Wang, T., & Jiang, W. (2018). Prediction of employee promotion based on personal basic features and post features. Paper presented at the Proceedings of the International Conference on Data Processing and Applications. https://doi.org/10.1145/3224207.3224210
- Makó, C., & Illéssy, M. (2020). Automation, Creativity, and the Future of Work in Europe: A Comparison between the Old and New Member States with a Special Focus on Hungary. Intersections: East European Journal of Society and Politics, 6(2), 112-129. https://doi.org/10.17356/ieejsp.v6i2.625
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International Journal of Surgery, 8(5), 336-341. https://doi.org/10.1136/bmj.b2535
- Morozevich, E. S., Kuznetsova, Y. A., Kubrikova, A. S., Livak, N. S., & Makarov, A. I. (2022). Employee’s Competence Profile for Adaptive Organization Management. Organizacija, 55(1), 3-16. https://doi.org/10.2478/orga-2022-0001
- Moyo, S., Doan, T. N., Yun, J. A., & Tshuma, N. (2018). Application of machine learning models in predicting length of stay among healthcare workers in underserved communities in South Africa. Human resources for health, 16(1), 1-9. https://doi.org/10.1186/s12960-018-0329-1
- Murphy, K. P. (2012). Machine learning: a probabilistic perspective: MIT press.
- Nosratabadi, S., Ardabili, S., Lakner, Z., Mako, C., & Mosavi, A. (2021). Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS. Agriculture, 11(5), 408. https://doi.org/10.3390/agriculture11050408
- Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., Gandomi, A. H. (2020). Data science in economics: comprehensive review of advanced machine learning and deep learning methods. Mathematics, 8(10), 1799. https://doi.org/10.3390/math8101799
- Nosratabadi, S., Szell, K., Beszedes, B., Imre, F., Ardabili, S., & Mosavi, A. (2020). Comparative Analysis of ANN-ICA and ANN-GWO for Crop Yield Prediction. In the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF). https://doi.org/10.1109/RIVF48685.2020.9140786.
- Olan, F., Arakpogun, E. O., Suklan, J., Nakpodia, F., Damij, N., & Jayawickrama, U. (2022). Artificial intelligence and knowledge sharing: Contributing factors to organizational performance. Journal of Business Research, 145, 605-615. https://doi.org/10.1016/j.jbusres.2022.03.008
- Praveen, U., Farnaz, G., & Hatim, G. (2019). Inventory management and cost reduction of supply chain processes using AI based time-series forecasting and ANN modeling. Procedia Manufacturing, 38, 256-263. https://doi.org/10.1016/j.promfg.2020.01.034
- Peisl, T., & Shah, B. (2019). The impact of blockchain technologies on recruitment influencing the employee lifecycle. Paper presented at the European Conference on Software Process Improvement. https://doi.org/10.1007/978-3-030-28005-5_54
- Raschka, S. (2015). Python machine learning: Packt Publishing Ltd.
- Ren, S., Patrick Hui, C. L., & Jason Choi, T. M. (2018). AI-based fashion sales forecasting methods in big data era. In Artificial intelligence for fashion industry in the big data era (pp. 9-26). Springer, Singapore.10.1007/978-981-13-0080-6_2
- Schapire, R.E. (2013). Explaining AdaBoost. In: Schölkopf, B., Luo, Z., Vovk, V. (eds) Empirical Inference. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41136-6_5
- Singer, G., & Cohen, I. (2020). An objective-based entropy approach for interpretable decision tree models in support of human resource management: The case of absenteeism at work. Entropy, 22(8), 821. https://doi.org/10.3390/e22080821
- Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126(6), 5113-5142. https://doi.org/10.1007/s11192-021-03948-5
- Susmita, E. K. K. A., & Singh, P. (2022). Predicting HR Professionals’ Adoption of HR Analytics: An Extension of UTAUT Model. Organizacija, 55(1), 77-93. https://doi.org/10.2478/orga-2022-0006
- Xie, Q. (2020). Machine learning in human resource system of intelligent manufacturing industry. Enterprise Information Systems, 16 (2), 264-284. https://doi.org/10.1080/17517575.2019.1710862
- Yadav, S., Jain, A., & Singh, D. (2018). Early prediction of employee attrition using data mining techniques. Paper presented at the 2018 IEEE 8th International Advance Computing Conference (IACC). https://doi.org/10.1109/IADCC.2018.8692137
- Zaman, E. A. K., Kamal, A. F. A., Mohamed, A., Ahmad, A., & Zamri, R. A. Z. R. M. (2018). Staff Employment Platform (StEP) Using Job Profiling Analytics. Paper presented at the International Conference on Soft Computing in Data Science. https://doi.org/10.1007/978-981-13-3441-2_30
- Zhao, Y., Hryniewicki, M. K., Cheng, F., Fu, B., & Zhu, X. (2018). Employee turnover prediction with machine learning: A reliable approach. Paper presented at the Proceedings of SAI intelligent systems conference. https://doi.org/10.1007/978-3-030-01057-7_56
- Zhe, I. T. Y., & Keikhosrokiani, P. (2021). Knowledge workers mental workload prediction using optimised ELANFIS. Applied Intelligence, 51(4), 2406-2430. https://doi.org/10.1007/s10489-020-01928-5
