Have a personal or library account? Click to login

Are we Ready to Use Microchip Implants? An International Cross-sectional Study

Open Access
|Dec 2021

References

  1. Achille, R., Perakslis, C., & Michael, K. (2012). Ethical Issues to Consider for Microchip Implants in Humans. Ethics in Biology, Engineering and Medicine, 3, 75–86. https://doi.org/10.1615/EthicsBiologyEngMed.201300700910.1615/EthicsBiologyEngMed.2013007009
  2. Albrecht, K. (2010). Microchip-induced tumors in laboratory rodents and dogs: A review of the literature 1990-2006. 2010 IEEE International Symposium on Technology and Society, 337–349. https://doi.org/10.1109/ISTAS.2010.551462210.1109/ISTAS.2010.5514622
  3. Bansal, G., Zahedi, F. M., & Gefen, D. (2015). Do context and personality matter? Trust and privacy concerns in disclosing private information online. Information & Management, 53(1), 1–21. https://doi.org/10.1016/j.im.2015.08.00110.1016/j.im.2015.08.001
  4. Basham, R. (2014). Surveilling the Elderly: Emerging Demographic Needs and Social Implications of RFID Chip Technology Use. In M. G. Michael & K. Michael (Eds.), Uberveillance and the Social Implications of Microchip Implants: Emerging Technologies (pp. 169–185). IGI Global. https://doi.org/10.4018/978-1-4666-4582-0.ch00710.4018/978-1-4666-4582-0.ch007
  5. Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide. In Latent variable modeling using R: A step-by-step guide. Routledge/Taylor & Francis Group. https://doi.org/10.4324/978131586978010.4324/9781315869780
  6. Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300. http://www.jstor.org/stable/234610110.1111/j.2517-6161.1995.tb02031.x
  7. Carr, N. K. (2020). As Society Strives for Reduced Contact during the Pandemic, How Can Human Microchipping Help? Villanova Law Review, 65, 46–60. https://digitalcommons.law.villanova.edu/vlr/vol65/iss6/3
  8. Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/1070551070130183410.1080/10705510701301834
  9. Cheung, G. W., & Lau, R. S. (2011). A Direct Comparison Approach for Testing Measurement Invariance. Organizational Research Methods, 15(2), 167–198. https://doi.org/10.1177/109442811142198710.1177/1094428111421987
  10. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. In Structural Equation Modeling (Vol. 9, Issue 2, pp. 233–255). Lawrence Erlbaum. https://doi.org/10.1207/S15328007SEM0902_510.1207/S15328007SEM0902_5
  11. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease Of Use, and User Acceptance. MIS Quarterly, 13(3), 319–339. https://doi.org/10.2307/24900810.2307/249008
  12. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/315131210.2307/3151312
  13. Fram, B. R., Rivlin, M., & Beredjiklian, P. K. (2020). On Emerging Technology: What to Know When Your Patient Has a Microchip in his Hand. Journal of Hand Surgery, 45(7), 645–649. https://doi.org/10.1016/j.jhsa.2020.01.00810.1016/j.jhsa.2020.01.008
  14. Franks, C., & Smith, R. (2021). Changing perceptions of biometric technologies. In Research Report no. 20. Canberra: Australian Institute of Criminology. https://doi.org/10.52922/rr7814610.52922/rr78146
  15. Gaffney, M., & Gopini, G. (2020). Attitude Towards Chip Implant Devices for Individual Enhancement Purposes on Example of Estonian Population . [University of Tartu]. https://web-proxy.io/proxy/dspace.ut.ee/bit-stream/handle/10062/67048/gaffney_matthew_and_gopini_gopichand.pdf?sequence=4&isAllowed=y
  16. Gauttier, S. (2019). “I” ve got you under my skin’ – the role of ethical consideration in the (non-) acceptance of insideables in the workplace. Technology in Society, 56, 93–108. https://doi.org/10.1016/j.techsoc.2018.09.00810.1016/j.techsoc.2018.09.008
  17. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning.
  18. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/1070551990954011810.1080/10705519909540118
  19. Jorgensen, T. D., Kite, B. A., Chen, P.-Y., & Short, S. D. (2018). Permutation randomization methods for testing measurement equivalence and detecting differential item functioning in multiple-group confirmatory factor analysis. In Psychological Methods (Vol. 23, Issue 4, pp. 708–728). American Psychological Association. https://doi.org/10.1037/met000015210.1037/met0000152
  20. Jorgensen, T. D., S, P., Schoemann, A. M., Rosseel, Y., Miller, P., Quick, C., Garnier-Villarreal, M., Selig, J., Boulton, A., Preacher, K., Coffmann, D., Rhemtulla, M., Robitzsch, A., Enders, C., Arslan, R., Clinton, B., Panko, P., Merkle, E., Chesnut, S., … Ben-Shachar, M. S. (2020). Useful Tools for Structural Equation Modeling. https://cran.r-project.org/web/packages/semTools/semTools.pdf
  21. Katz, J. E., & Rice, R. E. (2009). Public views of mobile medical devices and services: A US national survey of consumer sentiments towards RFID healthcare technology. International Journal of Medical Informatics, 78, 104–114. https://doi.org/10.1016/j.ijmedinf.2008.06.00110.1016/j.ijmedinf.2008.06.001
  22. Koufteros, X. A. (1999). Testing a model of pull production: a paradigm for manufacturing research using structural equation modeling. Journal of Operations Management, 17(4), 467–488. https://doi.org/10.1016/S0272-6963(99)00002-910.1016/S0272-6963(99)00002-9
  23. Lai, H. C., Chan, H. W., & Singh, N. P. (2016). Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells. International Journal of Radiation Biology, 92(3), 156–161. https://doi.org/10.3109/09553002.2016.113526410.3109/09553002.2016.1135264
  24. Lockton, V., & Rosenberg, R. S. (2005). RFID: The next serious threat to privacy. Ethics and Information Technology, 7(4), 221–231. https://doi.org/10.1007/s10676-006-0014-210.1007/s10676-006-0014-2
  25. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. https://doi.org/10.1037/1082-989X.1.2.13010.1037/1082-989X.1.2.130
  26. Miceli, G. N., & Brabaranelli, C. (2016). Structural Equations Modeling: Theory and Applications in Strategic Management. In G. B. Dagnino & C. M. C (Eds.), Research Methods for Strategic Management (pp. 98–136). Routledge/Taylor & Francis Group. https://doi.org//10.1155/2012/263953
  27. Michael, K., Aloudat, A., Michael, M. G., & Perakslis, C. (2017). You Want to do What with RFID? Perceptions of radio-frequency identification implants for employee identification in the workplace. IEEE Consumer Electronics Magazine, 6(3), 111–117. https://doi.org/10.1109/MCE.2017.268497810.1109/MCE.2017.2684978
  28. Michael, K., & Michael, M. G. (2013). The future prospects of embedded microchips in humans as unique identifiers: the risks versus the rewards. Media, Culture & Society, 35(1), 78–86. https://doi.org/10.1177/016344371246456110.1177/0163443712464561
  29. Michael, M. G., & Michael, K. (2010). Toward a State of Überveillance [Special Section Introduction]. IEEE Technology and Society Magazine, 29(2), 9–16. https://doi.org/10.1109/MTS.2010.93702410.1109/MTS.2010.937024
  30. Mohamed, M. A. (2020). Modeling of Subcutaneous Implantable Microchip Intention of Use. In T. Ahram, W. Karwowski, A. Vergnano, F. Leali, & R. Taiar (Eds.), Intelligent Human Systems Integration 2020 (pp. 842–847). Springer International Publishing. https://doi.org//10.1007/978-3-030-39512-4_12810.1007/978-3-030-39512-4_128
  31. Perakslis, C., & Michael, K. (2012). Indian Millennials: Are microchip implants a more secure technology for identification and access control? Proceedings of the 2012 IEEE Conference on Technology and Society in Asia, T and SA 2012, 2012, 1–9. https://doi.org/10.1109/TSAsia.2012.639797710.1109/TSAsia.2012.6397977
  32. Perakslis, C., Michael, K., Michael, M. G., & Gable, R. (2014). Perceived Barriers for Implanting Microchips in Humans : A Transnational Study. In Norbert Wiener in the 21st Century (21CW). https://doi.org/10.1109/NORBERT.2014.689392910.1109/NORBERT.2014.6893929
  33. Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Developmental Review, 41, 71–90. https://doi.org/ https://doi.org/10.1016/j.dr.2016.06.00410.1016/j.dr.2016.06.004
  34. Rodriguez, D. A. (2019). Chipping in at work: Privacy concerns related to the use of body microchip (“RFID”) implants in the employer-employee context. Iowa Law Review, 104(3), 1581–1611. https://ilr.law.uiowa.edu/assets/Uploads/ILR-104-3-Rodriguez.pdf
  35. Rosseel, Y. (2014). The lavaan tutorial. In The lavaan tutorial. http://lavaan.ugent.be/tutorial/tutorial.pdf
  36. Rotter, P., Daskala, B., & Compano, R. (2008). RFID implants: Opportunities and and challenges for identifying people. IEEE Technology and Society Magazine, 27(2), 24–32. https://doi.org/10.1109/mts.2008.92486210.1109/MTS.2008.924862
  37. Sarwar, N., Khan, F. N., Ali, A., Rafique, H., Hussain, I., & Irshad, A. (2019). Microchip with Advance Human Monitoring Technique and RFTS. In I. S. Bajwa, F. Kamareddine, & A. Costa (Eds.), Intelligent Technologies and Applications (pp. 560–570). Springer Singapore. https://doi.org//10.1007/978-981-13-6052-7_4810.1007/978-981-13-6052-7_48
  38. Schumacker, R. E., & Lomax, R. G. (2010). A beginner’s guide to structural equation modeling, 3rd ed. In A beginner’s guide to structural equation modeling, 3rd ed. Routledge/Taylor & Francis Group.
  39. Smith, C. (2008). Human microchip implantation. Journal of Technology Management and Innovation, 3(3), 151–156. https://doi.org/10.4067/S0718-2724200800010001510.4067/S0718-27242008000100015
  40. Teo, T., & Zhou, M. (2014). Explaining the intention to use technology among university students: a structural equation modeling approach. Journal of Computing in Higher Education, 26(2), 124–142. https://doi.org/10.1007/s12528-014-9080-310.1007/s12528-014-9080-3
  41. Turner, W. (2020). Chipping Away at Workplace Privacy: The Implantation of RFID Microchips and Erosion of Employee Privacy. Washington University Journal of Law & Policy, 61, 275–298. https://openscholarship.wustl.edu/law_journal_law_policy/vol61/iss1/18/
  42. Virkki, J., Wei, Z., Liu, A., Ukkonen, L., & Björninen, T. (2017). Wearable passive E-textile UHF RFID tag based on a slotted patch antenna with sewn ground and microchip interconnections. International Journal of Antennas and Propagation, 2017, 27–29. https://doi.org/10.1155/2017/347601710.1155/2017/3476017
  43. Werber, B., Baggia, A., & Žnidaršič, A. (2018). Factors Affecting the Intentions to Use RFID Subcutaneous Microchip Implants for Healthcare Purposes. Organizacija, 51(2), 121–133. https://doi.org/10.2478/orga-2018-001010.2478/orga-2018-0010
DOI: https://doi.org/10.2478/orga-2021-0019 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 275 - 292
Submitted on: May 24, 2021
Accepted on: Sep 23, 2021
Published on: Dec 7, 2021
Published by: University of Maribor, Faculty of Organizational Science
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Anja Žnidaršič, Alenka Baggia, Antonín Pavlíček, Jakub Fischer, Maciej Rostański, Borut Werber, published by University of Maribor, Faculty of Organizational Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.