Have a personal or library account? Click to login
Behavioural Aspects of the Financial Decision-Making Cover

Behavioural Aspects of the Financial Decision-Making

Open Access
|Mar 2019

References

  1. Aguiar, R. A., Sales, R.M. (2011). Fuzzy Logic and Behavioral Finance: A Connection. In International Conference on Economics Development and Research, 21-25 June 2011 (pp. 440-444). Singapore: Singapore Management University.
  2. Ayhan, M.B. (2018). A new decision-making approach for supplier selection: Hesitant fuzzy axiomatic design. International Journal of Information Technology & Decision Making, 17(4), 1085-1117, http://doi.org/10.1142/S021962201850018910.1142/S0219622018500189
  3. Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2), 129-151, http://doi.org/10.1257/jep.21.2.12910.1257/jep.21.2.129
  4. Barbera Marine, M.G., Garbajosa Cabello, M.J., & Guercio, M.B. (2008). Term structure of interest rates analysis in the Spanish market. Fuzzy Economic Review, 8(2), 53-62, http://doi.org/10.25102/fer.2008.02.0410.25102/fer.2008.02.04
  5. Barberis, N., & Thaler, P. (2003). A survey of behavioral finance. Handbook of the Economics of Finance, 1, 1053-1128.10.1016/S1574-0102(03)01027-6
  6. Bianchi, S., Pantanella, A., & Pianese A. (2015). Efficient markets and behavioral finance: A comprehensive multi-fractional model. Advances in Complex Systems, 18(1-2), 1-29, http://doi.org/10.1142/S021952591550001010.1142/S0219525915500010
  7. Bird, G., Du, W.T., & Willett T. (2017). Behavioral finance and efficient markets: What does Euro crisis tell us? Open Economies Review, 28(2), 273-295, http://doi.org/10.1007/s11079-017-9436-110.1007/s11079-017-9436-1
  8. Bojadziev, G., & Bojadziev, M. (2007). Fuzzy Logic for Business, Finance, and Management. Singapore: World Scientific Publishing Co. Pte. Ltd.10.1142/6451
  9. Bolos, M.I., Sabau-Popa, S.C., Filip, P., et al. (2015). Development of fuzzy logic system to identify the risk of projects financed from structural funds. International Journal of Computers Communications & Control, 10(4), 480-491, http://doi.org/10.15837/ijccc.2015.4.191410.15837/ijccc.2015.4.1914
  10. Bureš R., Němec V., & Szabo S. (2015). Multi-Engine Training manual. In Proceedings of 19th International Scientific Conference Transport Means, 22-23 October 2015 (pp. 583-586). Kaunas, Lithuania: Technologija.
  11. Casillas, J., Martinez, F. J., & Martinez-Lopez, F.J. (2004). Fuzzy association rules for estimating consumer behaviour models and their application to explain trust in internet shopping. Fuzzy Economic Review, 9(2), 3-26, http://doi.org/10.25102/fer.2004.02.0110.25102/fer.2004.02.01
  12. Chui, A.S.S., & Ip, W.H. (2017). Improving merger and acquisition decision-making using fuzzy logic and simulation. International Journal of Engineering Business Management, http://doi.org/10.1177/184797901771152110.1177/1847979017711521
  13. Costa, D.F., Carvalho, F.D., Moriera, B.C.D., & Do Prado, J.W. (2017). Bibliometric analysis on the association between behavioural finance and decision making with cognitive biases such as overconfidence, anchoring effect and confirmation bias. Scientometrics, 111(3), 1775-1799, http://doi.org/10.1007/s11192-017-2371-510.1007/s11192-017-2371-5
  14. DellaVigna, S. (2009). Psychology and economics: Evidence from the field. Journal of Economic Literature, 47(2), 315-371, http://doi.org/10.1257/jel.47.2.31510.1257/jel.47.2.315
  15. Dernoncourt, F. (2013). Introduction to fuzzy logic. Massachusetts: Institute of Technology.
  16. Dostál, P. (2012). Pokročilé metody rozhodování v podnikatelství a veřené správě [Advanced methods of decision making in business and public administration]. Praha: CERM.
  17. Famma, E.F. (1998). Market efficiency, long-term returns and behavioural finance. Journal of Financial Economics, 49(3), 283-306, http://doi.org/10.1016/S0304-405X(98)00026-910.1016/S0304-405X(98)00026-9
  18. Friedman, H.H., & Gerstein, M. (2017). Leading with Compassion: The Key to Changing the Organizational Culture and Achieving Success. Psychosociological Issues in Human Resource Management, 5(1), 160-175, http://doi.org/10.22381/PIHRM512017510.22381/PIHRM5120175
  19. Fullér, R. (1995). Neural Fuzzy Systems. Turku: Åbo Akademi University.
  20. Hachicha, N., Jarboui, B., & Siarry, P. (2011). A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics. Information Sciences, 181(1), 79-91, http://doi.org/10.1016/j.ins.2010.09.01010.1016/j.ins.2010.09.010
  21. Hirshleifer, D. (2015). Behavioural Finance. Annual Review of Financial Economics, 7, 133-159, http://doi.org/10.1146/annurev-financial-092214-04375210.1146/annurev-financial-092214-043752
  22. Hoff, K., & Stiglitz, J.E. (2016). Striving for balance in economics: Towards a theory of the social determination of behaviour. Journal of Economic Behavior & Organization, 126, 25-57, http://doi.org/10.1016/j.jebo.2016.01.00510.1016/j.jebo.2016.01.005
  23. Holzer, H.J. (2017). Building a New Middle Class in the Knowledge Economy. Psychosociological Issues in Human Resource Management, 5(2), 96-126, http://doi.org/10.22381/PIHRM522017410.22381/PIHRM5220174
  24. Houdek, P., & Koblovsky, P. (2014). Behavioural Finance and Organizations – Nonstandard risk preferences of managers. In Managing and Modelling of Financial Risks: 7th International scientific conference, 8-9 September 2014 (pp. 273-281). Ostrava, Czech Republic: Technical University of Ostrava.
  25. Hryhoruk, P.M., Khrushch, N.A., & Grygoruk, S.S. (2017). An approach to construct fuzzy preference relationships for managerial decision-making. Scientific Bulletin of Polissia, 4, 92-99, http://doi.org/10.25140/2410-9576-2017-2-4(12)-92-9910.25140/2410-9576-2017-2-4(12)-92-99
  26. Huang, J.Y., Shieh, J.C.P., & Kao, Y.C. (2016). Starting points for a new researcher in behavioral finance. International Journal of Managerial Finance, 12(1), 92-103, http://doi.org/10.1108/IJMF-05-2015-011110.1108/IJMF-05-2015-0111
  27. Jay, R. (2003). Behavioural Finance. Pacific-Basin Finance Journal. 11(4), 429-437.10.1016/S0927-538X(03)00048-9
  28. Kemaloglu, S.A., Shapiro, A.F., & Tank, F. (2018). Using fuzzy logic to interpret dependent risks. Insurance: Mathematics and Economics, 79(C), 101-106, http://doi.org/10.1016/j.insmatheco.2018.01.00110.1016/j.insmatheco.2018.01.001
  29. Kercheval, A.N. (2012). Financial Economics: A concise introduction to classical and behavioral finance. Quantitative Finance. 12(10), 1487-1489, http://doi.org/10.1080/14697688.2012.69508510.1080/14697688.2012.695085
  30. Khashanab, K., & Alsumaiman, T. (2016). Network theory and behavioral finance in a heterogeneous market environment. Complexity, 21(S2), 530-554, http://doi.org/10.1002/cplx.2183410.1002/cplx.21834
  31. Khoshnood, M., & Khoshnood, Z. (2011). Behavioral Finance: A New Paradigm in Finance. Information and Finance, 21, 96-100.
  32. Kim, D.H., & Sohn, S.Y. (2016). Fuzzy analytic hierarchy process applied to technology credit scorecrad considering entrepreneurs´ psychological and behavioural attributes. Journal of Intelligent & Fuzzy Systems, 30(4), 2349-2364, http://doi.org/10.3233/IFS-15200510.3233/IFS-152005
  33. Kliestikova, J., Misankova, M., & Kliestik, T. (2017). Bankruptcy in Slovakia: International comparison of the creditor´s position. Oeconomia Copernicana, 8(2), 221–237, http://doi.org/10.24136/oc.v8i2.1410.24136/oc.v8i2.14
  34. Kliger, D., Van Den Assem, M. J., & Zwinkles R.C. J. (2014). Empirical behavioral finance. Journal of Economic Behavior & Organization, 107(SI), 421-427, http://doi.org/10.1016/j.jebo.2014.10.01210.1016/j.jebo.2014.10.012
  35. Koszegi, B., & Rabin, M. (2006). A model of reference-dependent preferences. The Quarterly Journal of Economics, 121(4), 1133-1165, http://doi.org/10.1093/qje/121.4.113310.1093/qje/121.4.1133
  36. Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775–791, http://doi.org/10.24136/eq.v12i4.4010.24136/eq.v12i4.40
  37. Liao, H., & Xu, Z. (2017). Hesitant fuzzy decision-making methodologies and applications. Switzerland: Springer Publications.10.1007/978-981-10-3265-3
  38. Maciel, L., Ballini, R., & Gomide, F. (2017). An evolving possibilistic fuzzy modelling approach for value at risk estimation. Applied Soft Computing, 60, 820-830, http://doi.org/10.1016/j.asoc.2017.04.02810.1016/j.asoc.2017.04.028
  39. Maciel, L., Gomide, F., & Ballini, R. (2016). Evolving fuzzy-GARCH approach for financial volatility modelling and forecasting. Computational Economics, 48(3), 379-398, http://doi.org/10.1007/s10614-015-9535-210.1007/s10614-015-9535-2
  40. Marakova, V., & Medvedova, M. (2016). Application of innovations in tourism destinations. Forum Scientiae Oeconomia, 4(1), 33-43.
  41. Mendes-Da-Silva, W., Da Costa, N.C.A., & Barros, L.A. (2015). Behavioral Finance: Advances in the last decade. RAE-Revista de Administracao de Empresas, 55(1), 10-13, http://doi.org/10.1590/S0034-75902015010210.1590/S0034-759020150102
  42. Michalopoulos, M., Thomaidis, N., Dounaias, D., & Zopoinidis, C. (2004). Using a fuzzy sets approach to select a portfolio of Greek government bonds. Fuzzy Economic Review, 9(2), 27-48, http://doi.org/10.25102/fer.2004.02.0210.25102/fer.2004.02.02
  43. Mullor, J. R., Sansalvador, M.E., & Trigueros, P. (2002). Valuation of efficiency under conditions of uncertainty and subjectivity. Fuzzy Economic Review, 7(2), 81-96.
  44. Munoz, P., Manuel, A., & Ochoa, E. (2013). Incorporation of fuzzy logic to the Black-Scholes model in exchange option pricing. Advances in Intelligent Systems Research, 51, 79-87.
  45. Muzzioli, S., & De Beats, B. (2017). Fuzzy Approaches to option price modelling. IEEE Transactions on Fuzzy Systems, 25(2), 392-401, http://doi.org/10.1109/TFUZZ.2016.257490610.1109/TFUZZ.2016.2574906
  46. Nadanyiova, M. (2016). Using the principles of green marketing in Slovak conditions. Ekonomicko-manazerske spectrum, 10(1), 47-58.
  47. Olah, J., Zeman, Z., Balogh, I., & Popp, J. (2018). Future challenges and areas of development for supply chain management, Logforum, 14(1), 127-138, http://doi.org/10.17270/J.LOG.2018.23810.17270/J.LOG.2018.238
  48. Pazzi, J., & Tohmé, F. (2005). A fuzzy characterization of uncertainty in financial crises. Fuzzy Economic review. 10(2), 61-70, http://doi.org/10.25102/fer.2005.02.0510.25102/fer.2005.02.05
  49. Peters, E.E. (1996). Chaos and order in the capital markets: A new view of cycles, prices and market volatility. New York: John Wiley & Sons, Inc.
  50. Radin, M.A., & Riashchenko, V. (2017). Effective pedagogical management as a road to successful international teaching and learning. Forum Scientiae Oeconomia, 5(4), 71-84, http://doi.org/10.23762/FSO_VOL5NO4_17_6
  51. Rakovska, Z., & Svoboda, M. (2016). Practical application of sentiment indicators in financial analysis: Behavioral finance approach. In European Financial System 2016: Proceedings of the 13th International Scientific Conference, 27-28 June 2018 (pp. 630-637). Brno, Czech Republic: Masaryk University.
  52. Richards, T. (2014). Investing Psychology: The effect of behavioural finance on investment choice and bias. England: John Wiley & Sons, Ltd.10.1002/9781118779422
  53. Ritter, J.R. (2003). Behavioral finance. Pacific-Basin Finance Journal, 11(4), 429-437, http://doi.org/10.1016/S0927-538X(03)00048-910.1016/S0927-538X(03)00048-9
  54. Samson, A. (2018). The Behavioral economics guide. London: Behavioral Science Solutions, Ltd.
  55. Schjaer- Jacobsen, H. (2004). Modelling of economic uncertainty, Fuzzy Economic Review. 9(2), 75-92.
  56. Sewell, M. (2007). Behavioural finance. University of Cambridge Journal, 2, 1-13.
  57. Shiller, R.J. (2003). From efficient markets theory to behavioral finance. Journal of Economic Perspectives, 17(1), 83-104, http://doi.org/10.1257/08953300332116496710.1257/089533003321164967
  58. Smith, V.L. (1976). Experimental Economics: Induced value theory. The American Economic Review, 66(2), 274-279.
  59. Stambaugh, R.F, Yu, J., & Yuan, Y. (2012). The short of it: Investor sentiment and anomalies. Journal of Financial Economics. 104(2), 288-302, http://doi.org/10.1016/j.jfineco.2011.12.00110.1016/j.jfineco.2011.12.001
  60. Teichmann, D., Dorda, M., Golč, K., & Binova, H. (2015). Locomotive Assignment Problem with Heterogeneous Vehicle Fleet and Hiring. Mathematical Problems in Engineering, 1-8, http://doi.org/10.1155/2015/58390910.1155/2015/583909
  61. Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529-539, http://doi.org/10.1002/int.2041810.1002/int.20418
  62. Tversky, A, & Kahneman, D. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–292.10.2307/1914185
  63. Vella, V., & Ng, W.L. (2014). Enhancing risk-adjusted performance of stock market intraday trading with neuro-fuzzy systems. Neurocomputing, 141(SI), 170-187, http://doi.org/10.1016/j.neucom.2014.03.02610.1016/j.neucom.2014.03.026
  64. Xu, Z.Q. (2014). A new characterization of comonotonicity and its application in behavioral finance. Journal of Mathematical Analysis and Applications, 420(2), 1864-1865, http://doi.org/10.1016/j.jmaa.2014.06.08010.1016/j.jmaa.2014.06.080
  65. Yang, W. (2016). Survey on behavioural finance theory. In Proceedings of the 2016 International Conference on Management Science and Innovative Education (MSIE), 15-16 October 2016 (pp. 188-191). Sanya, China: Atlantis Press.10.2991/msie-16.2016.29
  66. Yu, Z.A., & Zheng X.S. (2015). Study of the investment behaviour based on behavioural finance. In Finance and Performance of Firms in Science, Education and Practice - 7th International scientific conference of finance and performance of firms in science, (pp. 1671-1680). Zlin, Czech Republic: Tomas Bata University in Zlin.
  67. Zadeh, L. (1965). Fuzzy sets. Information and Control. 8(3), 338-353, http://doi.org/10.1016/S0019-9958(65)90241-X10.1016/S0019-9958(65)90241-X
  68. Zadeh, L. (1968). Fuzzy algorithms. Information and Control. 12(2), 94-102, http://doi.org/10.1016/S0019-9958(68)90211-810.1016/S0019-9958(68)90211-8
  69. Zgurovsky, M., & Zaychenko, Y.P. (2016). Application of fuzzy logic systems and fuzzy neural networks in forecasting problems in macroeconomy and finance. Fundamentals of Computational Intelligence: System Approach. 652, 133-178, http://doi.org/10.1007/978-3-319-35162-9_410.1007/978-3-319-35162-9_4
  70. Zhang, J.G. (2009). Behavioural Finance Aspects of Financial Products Innovation. In Proceedings of 2009 International conference of management science and information system, 14-16 September 2009 (pp. 1206-1210). Jiaozuo, China.
  71. Zhang, X., & Xu, Z. (2017). Hesitant fuzzy methods for multiple criteria decision analysis. Switzerland: Springer Publications.10.1007/978-3-319-42001-1
  72. Zhuravleva, N.A. (2017). Managerial challenges in Russian railways privatization and restructuring in the context of integration into global transport systems. Ekonomicko-manazerske spektrum. 11(2), 122-133.10.26552/ems.2017.2.122-133
DOI: https://doi.org/10.2478/orga-2019-0003 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 22 - 31
Submitted on: Jun 18, 2018
Accepted on: Jan 7, 2019
Published on: Mar 28, 2019
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Katarina Valaskova, Viera Bartosova, Pavol Kubala, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.