Have a personal or library account? Click to login
Weibull Decision Support Systems in Maintenance Cover

Weibull Decision Support Systems in Maintenance

Open Access
|May 2014

References

  1. Abernethy, R. B. (2006). The New Weibull Handbook, Fifth Edition. North Palm Beach, Florida: Published and distributed by Robert B. Abernethy.
  2. Aboura, K. & Soyer, R. (1986). A User’s manual for an interactive PC-based procedure for reliability assessment. George Washington University, Institute for Reliability and Risk Analysis. (Technical Report GWU/IRRA/Serial TR-86/14)
  3. Aboura, K., Singpurwalla, N. D., & Soyer, R. (1989a). Intelligent systems for reliability. In Proceedings of the 3rd IEEE International Symposium on Intelligent Control, 24-26 Aug. 1988, (103-107), http://dx.doi.org/10.1109/ISIC.1988.6541310.1109/ISIC.1988.65413
  4. Aboura, K., Singpurwalla, N. D., & Soyer, R. (1989b). Using expert opinion in reliability assessment. Reliability Review, 9(4), 11-12. Retrieved from http://asq.org/qic/displayitem/?item=3616
  5. Aboura, K., Singpurwalla, N. D., & Soyer, R. (1989c). Software for use of expert opinion in reliability. ASQC Quality Congress Transactions, 527-532. Retrieved from http://asq.org/qic/display-item/?item=3616
  6. Aboura, K., & Campodonico, S. (1992). IPRA, an interactive procedure for reliability assessment incorporating the opinion of one or two experts and failure/survival data: user’s manual. George Washington University, Institute for Reliability and Risk Analysis. (Technical Report GWU/IRRA/Serial TR-92/2).
  7. Aboura, K. (1995). Use of informed judgement in the assessment of a prior distribution for the parameters of the Weibull and generalized gamma reliability models. CSIRO. (Report No. DMS-D 95/63).
  8. Aboura, K., & Agbinya, J. I. (2013). Adaptive maintenance optimization using initial reliability estimates. Journal of Green Engineering. 3, 325-345.
  9. Aboura, K., & Robinson, N. I. (2013). Optimal adaptive solutions for maintenance optimization decision support systems. In Proceedings of the 25th International Conference on Systems Research, Informatics and Cybernetics, Advances in Simulation-Based Decision Support and Business Intelligence, 3, (26-30), Baden-Baden, Germany.
  10. Bousquet, N. (2006). A Bayesian analysis of industrial lifetime data with Weibull distributions. Institut National de Recherche en Informatique et en Automatique. (RR-6025). Retrieved January 2014 from http://hal.inria.fr/docs/00/11/57/52/PDF/RR-6025.pdf
  11. Bousquet, N. (2010). Elicitation of Weibull priors. arXiv:1007.4740 [stat.ME]. Retrieved January 2014 from http://arxiv.org/abs/1007.4740v3
  12. Constantine, A. G., & Robinson, N. I. (1997). The Weibull renewal function for moderate to large arguments. Computational Statistics & Data Analysis, 24(1), 9-27, http://dx.doi.org/10.1016/S0167-9473(96)00052-710.1016/S0167-9473(96)00052-7
  13. Cox, D. R. (1962). Renewal Theory. London: Chapman-Hall
  14. Fréchet, M. (1927). Sur la loi de probabilité de l’écart maximum. Annales de la Société Polonaise de Mathematique, Cracovie, 6, 93-116.
  15. Goel, P. K. (1988). Software for Bayesian analysis: Current status and additional need. In J. M. Bernardo, M. H. Degroot, D. V. Lindley & A. F. M. Smith (Eds.), Bayesian Statistics 3 (173-188). Oxford: Oxford Univ. Press.
  16. Kaminskiy, M. P. & Krivtsov, V. V. (2005). A simple procedure for Bayesian estimation of the Weibull distribution. IEEE Transactions on Reliability, 54(4), 612-616, http://dx.doi.org/10.1109/TR.2005.85809310.1109/TR.2005.858093
  17. Mazzuchi, T. A., & Soyer, R. (1996). A Bayesian perspective on some replacement strategies. Reliability Engineering and System Safety. 51(3), 295-303, http://dx.doi.org/10.1016/0951-8320(95)00077-110.1016/0951-8320(95)00077-1
  18. Ouchi, F. (2004). A Literature review on the use of expert opinion in probabilistic risk analysis. World Bank. (Policy Research Working Paper 3201, February 2004). Retrieved January 2013 from http://econ.worldbank.org 10.1596/1813-9450-3201
  19. Pak, A., Parham, G. A., & Saraj, M. (2013). Inference for the Weibull distribution based on fuzzy data. Revista Colombiana de Estadística. 36(2), 339-358. Retrieved January 2014 from http://www.emis.de/journals/RCE/V36/v36n2a10PakParham-Saraj1.pdf
  20. ReliaSoft Corporation (2014). Life data analysis (Weibull analysis), an overview of basic concepts. Retrieved January 2014 from http://www.weibull.com/basics/lifedata.htm
  21. Rinne, H. (2009). The Weibull Distribution A Handbook. New York: CRC Press, Taylor & Francis Group.
  22. Robinson, N. I. (1997). Renewal functions as series. Communications in Statistics. Stochastic Models, 13(3), 577-604, http://dx.doi.org/10.1080/1532634970880744010.1080/15326349708807440
  23. Robinson, N. I. (1998). Residue series for the generalised gamma renewal function. In J. Noye, M. Teubner, & A. Gill (Eds.), Computational Techniques and Applications: CTAC97 (591-598). Singapore : World Scientific.
  24. Rosin, P., & Rammler, E. (1933). The laws governing the fineness of powdered coal. Journal of the Institute of Fuel, 7, 29-36.
  25. Singpurwalla, N. D. (1988). An interactive PC-based procedure for reliability assessment incorporating expert opinion and survival data. Journal of the American Statistical Association, 83(401), 43-51, http://dx.doi.org/10.1080/01621459.1988.1047856310.1080/01621459.1988.10478563
  26. Singpurwalla, N. D., & Song, M. S. (1988). Reliability analysis using Weibull lifetime data and expert opinion. IEEE Transactions on Reliability, 37(3), 340-347, http://dx.doi.org/10.1109/24.376510.1109/24.3765
  27. Singpurwalla, N. D. (2006). Reliability and Risk. A Bayesian Perspective. Chichester, West Sussex: John Wiley and Sons.10.1002/9780470060346
  28. Smeitink, E., & Dekker, R. (1990). A simple approximation to the renewal function. IEEE Transactions on Reliability, 39(1), 71-75, http://dx.doi.org/10.1109/24.5261410.1109/24.52614
  29. Smith, W. L., & Leadbetter, M. R. (1963). On the renewal function for the Weibull distribution. Technometrics, 5(3), 393-396 http://dx.doi.org/10.1080/00401706.1963.1049010710.1080/00401706.1963.10490107
  30. Soland, R. M. (1969). Bayesian analysis of the weibull process with unknown scale and shape parameters. IEEE Transactions on Reliability, 18, 181-184, http://dx.doi.org/10.1109/TR.1969.521634810.1109/TR.1969.5216348
  31. Sultan, K. S., & Mahmoud, M. R. (2007). Estimation of parameters of the Weibull distribution based on progressively censored data. International Mathematical Forum, 2(41), 2031-2043.10.12988/imf.2007.07183
  32. Weibull, W. (1939). A statistical theory of the strength of material. Proceedings of the Royal Swedish Institute for Engineering Research, 151(1), 1-45.
  33. Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18, 293-297.10.1115/1.4010337
  34. Weibull, G. W. (1981). Weibull, A statistical distribution function of wide applicability. This Week’s Citation Classic. 10, 18-18.Retrieved January 2013, from http://garfield.library.upenn.edu/classics1981/A1981LD32400001.pdf
DOI: https://doi.org/10.2478/orga-2014-0008 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 81 - 89
Submitted on: Nov 4, 2013
|
Accepted on: Feb 9, 2014
|
Published on: May 17, 2014
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Khalid Aboura, Johnson I. Agbinya, Ali Eskandarian, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.