Have a personal or library account? Click to login
Financial Distress Prediction of Iranian Companies Using Data Mining Techniques Cover

Financial Distress Prediction of Iranian Companies Using Data Mining Techniques

Open Access
|Feb 2013

References

  1. Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609, http://dx.doi.org/10.1111%2Fj.1540-6261.1968.tb00843.x10.1111/j.1540-6261.1968.tb00843.x
  2. Altman, E. I. (1983). Multidimensional graphics and bankruptcy prediction: a comment. Journal of Accounting Research, 21(Spring), 297-299, http://dx.doi.org/10.2307%2F249095010.2307/2490950
  3. Back, B., Laitinen, T., Sere, K. & van Wezel, M. (1996a). Choosing Bankruptcy Predictors using Discriminant Analysis, Logit Analysis and Genetic Algorithms’, Technical Report no. 40, Turku Centre for Computer Science, Turku School of Economics and Business Administration.
  4. Back, B., Laitinen, T. & Sere, K. (1996b). Neural networks and genetic algorithms for bankruptcy predictions. Expert Systems with Applications, 11(4), 407-413, http://dx.doi.org/10.1016%2FS0957-4174%2896%2900055-310.1016/S0957-4174(96)00055-3
  5. Becchetti, L. J. & Sierra (2003). Bankruptcy Risk and Productive Efficiency in Manufacturing Firms, Journal of Banking and Finance, 27, 2099-2120.10.1016/S0378-4266(02)00319-9
  6. Chen M.Y. & Du Y.K. (2009). Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086, http://dx.doi.org/10.1016/j.eswa.2008.03.02010.1016/j.eswa.2008.03.020
  7. Chuang, C. C, Jeng, J. T. & Lin, P. T. (2004). Annealing robust radial basis function networks for function approximation with outliers, Neurocomputing, 56, 123-139, http://dx.doi.org/10.1016/S0925-2312(03)00436-310.1016/S0925-2312(03)00436-3
  8. Dambolena, I.G. & S.J. Khoury. (1980). Ratio Stability and Corporate Failure, The Journal of Finance, 35:1017-1026, http://dx.doi.org/10.1111%2Fj.1540-6261.1980.tb03517.x
  9. Gombola, M.J. & Ketz, J.E. (1983). A Note on Cash Flow and Classification Patterns of Financial Ratios. The Accounting Review, 58(1), 105-114, http://www.jstor.org/stable/246645
  10. Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks, MIT Press, Cambridge.
  11. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. London: Prentice-Hall.
  12. Hong-Bao, W., Wang Fu-Sheng, W. & Xian-Fei, Y. (2012). Financial Distress Prediction Based on Cost Sensitive Learning.Information Technology Journal, 11(2), 294-300, http://dx.doi.org/10.3923/itj.2012.294.30010.3923/itj.2012.294.300
  13. Hertz, J., Krogh, A. & Palmer, R. G. (1991). Introduction to the Theory of Neural Computation, Addison-Wesley, Reading Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685, http://dx.doi.org/10.1109%2F21.256541
  14. Jang, J. S. R., Sun, C. T, & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, NJ.10.1109/TAC.1997.633847
  15. Jo, H. & Han, I. (1997). Bankruptcy Prediction Using Case- Based Reasoning, Neural Networks, and Discriminant Analysis. Expert Systems with Applications, 13, 97-108 http://dx.doi.org/10.1016/S0957-4174(97)00011-010.1016/S0957-4174(97)00011-0
  16. Karels, G.V. & Prakash A.J. (1987). Multivariate Normality and Forecasting of Corporate Bankruptcy. Journal of BusinessFinance and Accounting, 14 (4), 573-592, http://dx.doi.org/10.1111/j.1468-5957.1987.tb00113.x10.1111/j.1468-5957.1987.tb00113.x
  17. Kim, M. T., Han, H. R., & Phillips, L. (2003). Metric equivalence assessment in cross-cultural research: Using an example of the center for epidemiological studies-depression scale (CES-D).10.1891/jnum.11.1.5.52061
  18. Journal of Nursing Measurement, 11, 5-18 Laitinen, E. K. & Laitinen, T. (2000). Bankruptcy Prediction: Application of the Taylor’s Expansion in Logistic Regression, International Review of Financial Analysis, 9(4), 327-349, http://dx.doi.org/10.1016/S1057-5219(00)00039-910.1016/S1057-5219(00)00039-9
  19. Lin, F., Yeh, C.C. & Lee, M.Y. (2011). The use of hybrid manifold learning and support vector machines in the prediction of business failure, Knowledge-Based Systems, 24(1), 95-101, http://dx.doi.org/10.1016/j.knosys.2010.07.009,10.1016/j.knosys.2010.07.009
  20. Min, J.H. & Lee, Y.C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert Systems with Applications, 28(4): 603-614, http://dx.doi.org/10.1016/j.eswa.2004.12.00810.1016/j.eswa.2004.12.008
  21. Nam, M. D. & Thanh, T. C. (2003). Approximation of function and its derivatives using radial basis function networks. Applied Mathematical Modeling, 27(3), 197-221. http://dx.doi.org/10.1016/j.eswa.2009.07.08110.1016/j.eswa.2009.07.081
  22. Ohlson, J. (1980).Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131, http://www.jstor.org/stable/249039510.2307/2490395
  23. Ravisankar, P. & Ravi, V. (2010). Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP. Knowledge-Based Systems, 23(8), 823-831, http://dx.doi.org/10.1016/j.knosys.2010.05.00710.1016/j.knosys.2010.05.007
  24. Scott, J. (1981). The probability of bankruptcy: A comparison of empirical prediction and theoretical model. Journal of Bankingand Finance, 5, 317-344, http://dx.doi.org/10.1016/0378-4266(81)90029-710.1016/0378-4266(81)90029-7
  25. Shin, K., Lee, T.S. & Kim, H. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systemswith Applications, 28: 127-135. http://dx.doi.org/10.1016/j.eswa.2004.08.00910.1016/j.eswa.2004.08.009
  26. Song et al. (2010). Feature selection for support vector machine in financial crisis prediction: a case study in China. ExpertSystems, 27(4), 299-310, http://dx.doi.org/10.1111/j.1468-0394.2010.00546.x10.1111/j.1468-0394.2010.00546.x
  27. Stam, A., Sun, M. & Haines, M. (1996). Artificial neural network representations for hierarchical preference structures. Computersand Operations Research, 23(12), 1191-1201, http://dx.doi.org/10.1016/S0305-0548(96)00021-410.1016/S0305-0548(96)00021-4
  28. Stiglitz, J. E., & Weiss A. (1981). Credit rationing in markets with imperfect information. American Economic Review, 71(June), 393-410. http://www.jstor.org/stable/1802787
  29. Sun, J., & Li, H. (2008). Data mining method for listed companies’ financial distress prediction. Knowledge-Based Systems, 21(1), 1-5, http://dx.doi.org/10.1016/j.knosys.2006.11.003,10.1016/j.knosys.2006.11.003
  30. Surendra, R. & Krishnamurthy, A. (1997). Face recognition using transform features and neural networks, Neural Networks, 30(10), 1615-1622. http://dx.doi.org/10.1016/S0031-3203(96)00184-710.1016/S0031-3203(96)00184-7
  31. Tam, K. Y. & Kiang, M. (1992). Managerial Applications of Neural Networks: The Case of Bank Failure Predictions, ManagementScience, 38(7), 926-947.10.1287/mnsc.38.7.926
  32. Vapnik V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New York.10.1007/978-1-4757-2440-0
  33. Vythoulkas, P. C. & Koutsopoulos, H. N. (2003). Modeling discrete choice behavior using concepts from fuzzy set theory, approximate reasoning and neural networks. TransportationResearch, 11, 51-73, http://dx.doi.org/10.1016%2FS0968-090X%2802%2900021-910.1016/S0968-090X(02)00021-9
  34. Wilson, R. L. & Sharda, R. (1994). Bankruptcy Prediction Using Neural Networks, Decision Support Systems, 11, 545-557. http://dx.doi.org/10.1016/0167-9236(94)90024-810.1016/0167-9236(94)90024-8
  35. Wong B. K., Bodnovich T.A. & Selvi Y. (1997). Neural network applications in business: a review and analysis of the literature (1988-95). Decision Support Systems, 19, 301-320, http://www.jstor.org/stable/25404710.1016/S0167-9236(96)00070-X
  36. Wong, B. & Selvi, Y. (1998). Neural network applications in finance: A review and analysis of literature (1990-1996), Information& Management, 34, 129-139. http://dx.doi.org/10.1016/S0378-7206(98)00050-010.1016/S0378-7206(98)00050-0
  37. Xu, B. (2000). The welfare implications of costly monitoring in the credit market: A note. The Economic Journal, 110(463), 576-580, http://dx.doi.org/10.1111%2F1468-0297.0053810.1111/1468-0297.00538
  38. Zmijewski, M. E. (1984). Methodological issues related to the estimated of financial distress prediction models. Journal ofAccounting Research, 22(1), 59-82, http://www.jstor.org/stable/2490859 10.2307/2490859
DOI: https://doi.org/10.2478/orga-2013-0003 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 20 - 27
Published on: Feb 12, 2013
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Mahdi Moradi, Mahdi Salehi, Mohammad Ebrahim Ghorgani, Hadi Sadoghi Yazdi, published by University of Maribor
This work is licensed under the Creative Commons License.