References
- Abbass, S.G., Madkour, F.F. & Abu-El-Regal, M.A. (2018) Checklist of phytoplankton species in the Egyptian Red Sea Coast of Hurghada. Egypt. J. Aquat. Biol. & Fish. 22: 93–101.
- Acker, J., Leptoukh, G., Shen, S., Zhu, T. & Kempler, S. (2008). Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs. J. Mar. Syst. 69 (3): 191–204. DOI: 10.1016/j.jmarsys.2005.12.006.
- Al-Aidaroos, A.M., Devassy, R.P. & El-Sherbiny, M.M. (2019). Unusual dominance of harmful microalgae Pseudo-nitzschia delicatissima cf. (Cleve) Heiden in the coastal waters of Jeddah, central Red Sea. Pak. J. Bot. 51(2): 1–6. DOI: 10.30848/PJB2019-2(44).
- Al-Amri, A.A., Qari, H.A. & El-Sherbiny, M.M. (2020). Distribution and community structure of microphytoplankton in relation to increasing anthropogenic impact along coastal waters of Jeddah, the central Red Sea. Oceanol. Hydrobiol. Stud. 49(2): 193–205. DOI: 10.1515/ohs-2020-0018.
- Al-Farawati, R. (2010). Environmental conditions of the coastal waters of Southern Corniche, Jeddah, Eastern Red Sea: Physico-chemical approach. Aust. J. Basic Appl. Sci. 4: 3324–3337.
- Al-Harbi, S.M. & Affan, M. (2016). Seasonal dynamics of epiphytic microalgae and their host seaweeds Florideophyceae at Jeddah coast, the Red Sea, Saudi Arabia. Pak. J. Bot. 48(3): 1289–1298.
- Alsaafani, M.A., Alraddadi, T.M. & Albarakati, A.M. (2017). Seasonal variability of hydrographic structure in Sharm Obhur and water exchange with the Red Sea. Arab. J. Geosci. 10(14): 315. DOI: 10.1007/s12517-017-3108-8.
- Banguera-Hinestroza, E., Eikrem, W., Mansour, H., Solberg, I., Cúrdia, J. et al. (2016). Seasonality and toxin production of Pyrodinium bahamense in a Red Sea lagoon. Harmful Algae 55: 163–171. DOI: 10.1016/j.hal.2016.03.002.
- Basaham, A.S. & El-Sayed, M.A. (2006). Sharm Obhur: environmental consequences of 20 years of uncontrolled coastal urbanization. Marine Sciences 17(1).
- Basaham, A.S. & El-Shater, A. (1994). Textural and mineralogical characteristics of the surficial sediments of Sharm Obhur, Red Sea coast of Saudi Arabia. Marine Sciences 5(1).
- Bastos, L., Bio, A. & Iglesias, I. (2016). The importance of marine observatories and of RAIA in particular. Front. Mar. Sci. 3: 140. DOI: 10.3389/fmars.2016.00140.
- Brierley, A.S. & Kingsford, M.J. (2009). Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19(14): R602–R614. DOI: 10.1016/j.cub.2009.05.046.
- Clarke, K.R. & Gorley, R.N. (2006). PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.
- Devassy, R.P., El-Sherbiny, M.M., Al-Sofyani, A.M. & Al-Aidaroos, A.M. (2017). Spatial variation in the phytoplankton standing stock and diversity in relation to the prevailing environmental conditions along the Saudi Arabian coast of the northern Red Sea. Mar. Biodivers. 47: 995–1008. DOI: 10.1007/s12526-017-0693-4.
- Devassy, R.P., El-Sherbiny, M.M., Al-Sofyani, A.A., Crosby, M.P. & Al-Aidaroos, A.M. (2019). Seasonality and latitudinal variability in the diatom-cyanobacteria symbiotic relationships in the coastal waters of the Red Sea, Saudi Arabia. Symbiosis 78(3): 215–227.
- Dowidar, N.M. (1983). The genus Ceratium from the Red Sea. J. Fac. Mar. Sci. 3: 5–37.
- Dowidar, N., Raheem El-Din, S. & Aleem, A. (1978). Phytoplankton populations in the region of Obhur, Jeddah, Saudi Arabia. Bull. Fac. Sci., KAU 2: 271–292.
- Edwards, F.J. (1987). Climate and oceanography. Red Sea 1: 45–68.
- El-Sayed, M.A. (2002). Nitrogen and phosphorus in the effluent of a sewage treatment site on the eastern Red Sea coast: daily cycle, flux and impact on the coastal area. Int. J. Environ. Stud. 59(1): 73–94. DOI: 10.1080/00207230211959.
- Gómez, F. (2013). Reinstatement of the dinoflagellate genus Tripos to replace Neoceratium, marine species of Ceratium (Dinophyceae, Alveolata). CICIMAR Oceánides 28: 1–22.
- Hallegraeff, G.M. (2003). Harmful algal blooms: a global overview, Manual on harmful marine microalgae 33: 1–22.
- Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F. et al. (2008). A global map of human impact on marine ecosystems. Science 319: 948–952. DOI: 10.1126/science.1149345.
- Hansen, P.J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagic food web. Mar. Ecol. Prog. Ser. 73(2–3): 253–261.
- Ismael, A.A. (2015). Phytoplankton of the Red Sea. In R. Najeeb, & I.C.F. Stewart (Eds.), The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin (pp. 567–583). Springer: Berlin Heidelberg.
- Kürten, B., Al-Aidaroos, A.M., Kürten, S., El-Sherbiny, M.M., Devassy, R.P. et al. (2016). Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea. Prog. Oceanogr. 140: 69–90. DOI: 10.1016/j.pocean.2015.11.003.
- Kürten, B., Khomayis, H.S., Devassy, R., Audritz, S., Sommer, U. et al. (2015). Ecohydrographic constraints on biodiversity and distribution of phytoplankton and zooplankton in coral reefs of the Red Sea, Saudi Arabia. Mar. Ecol. 36(4): 1195–1214. DOI: 10.1111/maec.12224.
- LeGresley, M. & McDermott, G. (2010). Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. UNESCO (IOC Manuals and Guides, no 55) (IOC/2010/MG/55): 25–30.
- Li, W., El-Askary, H., ManiKandan, K.P., Qurban, M.A., Garay, M.J. et al. (2017). Synergistic use of remote sensing and modeling to assess an anomalously high chlorophyll-a event during summer 2015 in the south central Red Sea. Remote Sens. 9(8): 778. DOI: 10.3390/rs9080778.
- Madkour, F.F., El-Sherbiny M.M. & Aamer, M.A. (2010). Phytoplankton population along certain Egyptian coastal regions of the Red Sea. Egypt. J. Aquat. Biol. & Fish. 14(2): 95–109.
- Mohamed, Z.A. & Al-Shehri, A.M. (2011). Occurrence and germination of dinoflagellate cysts in surface sediments from the Red Sea off the coasts of Saudi Arabia. Oceanologia 53(1): 121–136. DOI: 10.5697/oc.53-1.121.
- Mohamed, Z.A. & Al-Shehri, A.M. (2012). The link between shrimp farm runoff and blooms of toxic Heterosigma akashiwo in Red Sea coastal waters. Oceanologia 54(2): 287–309. DOI: 10.5697/oc.54-2.287.
- Mudarris, M.S.A. & Turki, A.J. (2006). Sewage water quality and its dilution in the coastal waters of South Corniche, Jeddah, Red Sea. JKAU: Met. Env. and Arid Land Agric. Sci. 17: 115–128.
- Parsons, T.R., Maita, Y. & Lalli, C.M. (1984). A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford.
- Peña-García, D., Ladwig, N., Turki, A.J. & Mudarris, M.S. (2014). Input and dispersion of nutrients from the Jeddah Metropolitan Area, Red Sea. Mari. Poll. Bull. 80(1): 41–51. DOI: 10.1016/j.marpolbul.2014.01.052.
- Qurban, M.A., Balala, A.C., Kumar, S., Bhavya, P.S. & Wafar, M. (2014). Primary production in the northern Red Sea. J. Mar. Syst. 132: 75–82. DOI: 10.1016/j.jmarsys.2014.01.006.
- Racault, M.F., Raitsos, D.E., Berumen, M.L., Brewin, R.J., Platt, T. et al. (2015). Phytoplankton phenology indices in coral reef ecosystems: Application to ocean-colour observations in the Red Sea. Remote Sens. Environ. 160: 222–234. DOI: 10.1016/j.rse.2015.01.019.
- Shaikh, E.A., Roff, J.C. & Dowidar, N.M. (1986). Phytoplankton ecology and production in the Red Sea off Jiddah, Saudi Arabia. Mar. Biol. 92(3): 405–416.
- Taylor, F.J.R. (1976). Dinoflagellates from the International Indian Ocean Expedition. A report on material collected by the R.V. “Anton Bruun” 1963–1964. Bibl. Bot. 132: 1–234.
- Tomas, C.R. (1997). Identifying Marine Phytoplankton. UNESCO. Protocols for the joint global ocean flux study (JGOFS), Manual and Guides 29, Academic press, USA.
- Touliabah, H.E., Abu El-Kheir, W.S., Kuchari, M.G. & Abdulwass, N.I.H. (2010). Phytoplankton composition at Jeddah Coast-Red Sea, Saudi Arabia in relation to some ecological factors. JKAU: Mari. Sci. 22 (1): 115–131.
- Wafar, M., Qurban, M.A., Ashraf, M., Manikandan, K.P., Flandez, A.V. et al. (2016). Patterns of distribution of inorganic nutrients in Red Sea and their implications to primary production. J. Mar. Syst. 156: 86–98. DOI: 10.1016/j.jmarsys.2015.12.003.