Have a personal or library account? Click to login
Dose enhancement effects of different-sized nanoparticles on tumors and surrounding tissues using Geant4 track structure simulation Cover

Dose enhancement effects of different-sized nanoparticles on tumors and surrounding tissues using Geant4 track structure simulation

By: Taylan TuğrulORCID  
Open Access
|Aug 2025

References

  1. Kakade, N. R., & Sharma, S. D. (2015). Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J. Cancer Res. Ther., 11, 94–97.
  2. Haume, K., Rosa, S., Grellet, S., Smialek, M. A., Butterworth, K. T., Solov’yov, A. V., Prise, K. M., Golding, J., & Mason, N. J. (2016). Gold nanoparticles for cancer radiotherapy: a review. Cancer Nano., 7, 8.
  3. Kwatra, D., Venugopal, A., & Anant, S. (2013). Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res., 2(4), 330–342.
  4. Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., & Le Sech, C. (2010). Enhancement of radiation effect by heavy elements. Rev. Mutat. Res., 704(1/3), 123–131.
  5. Pan, Y., Leifert, A., Ruau, D., Neuss, S., Bornemann, J., Schmid, G., Brandau, W., Simon, U., & Jahnen Dechent, W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18), 2067–2076.
  6. Taggart, L. E., McMahon, S. J., Currell, F. J., Prise, K. M., & Butterworth, K. T. (2014). The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol., 5(1), 5.
  7. Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27(21), 215101.
  8. Kavanagh, J. N., Redmond, K. M., Schettino, G., & Prise, K. M. (2013). DNA double strand break repair: a radiation perspective. Antioxid. Redox Signal., 18(18), 2458–2472.
  9. Nikjoo, H., O’Neill, P., Wilson, W. E., & Goodhead, D. T. (2001). Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res., 156(5), 577–583.
  10. Emfietzoglou, D., Cucinotta, F. A., & Nikjoo, H. (2005). A complete dielectric response model for liquid water: a solution of the Bethe ridge problem. Radiat Res., 164(2), 202–211.
  11. Pan, X., Cloutier, P., Hunting, D., & Sanche, L. (2003). Dissociative electron attachment to DNA. Phys. Rev. Lett., 90, 208102.
  12. Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., & Lacombe, S. (2010). Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21, 085103.
  13. Verkhovtsev, A. V., Korol, A. V., & Solov’yov, A. V. (2015). Electron production by sensitizing gold nanoparticles irradiated by fast ions. J. Phys. Chem. C, 119(20), 11000–11013.
  14. Butterworth, K. T., McMahon, S. J., Taggart, L. E., & Prise, K. M. (2013). Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl. Cancer Res., 2(4), 269–279.
  15. Moradi, F., Rezaee Enrahim Saraee, Kh., Abdul Sani, S. F., & Bradley, D. A. (2021). Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat. Phys. Chem., 180, 109294.
  16. Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol., 60(8), 977–985.
  17. Taheri, A., Khandaker, M. U., Moradi, F., & Bradley, D. A. (2024). A simulation study on the radiosensitization properties of gold nanorods. Phys. Med. Biol., 69, 045029.
  18. He, W., Ma, G., Shen, Q., & Tang, Z. (2022). Engineering gold nanostructures for cancer treatment: spherical nanoparticles, nanorods, and atomically precise nanoclusters. Nanomaterials, 12, 1738.
  19. Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 109, 84–101.
  20. Çağlar, M., Eşitmez, D., & Cebe, M. S. (2024). The effect of dose enhancement in tumor with silver nanoparticles on surrounding healthy tissues: A Monte Carlo study. Technology in Cancer Research & Treatment, 23, 1–8.
  21. Wu, J. (2021). The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its application. J. Pers. Med., 11(8), 771–779.
  22. Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 46(8), 6387–6392.
  23. Mesbahi, A. (2010). A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother., 15(6), 176–180.
  24. Martelli, S., & Chow, J. C. L. (2020). Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Nanomaterials, 10, 637.
  25. Cho, S. H. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Phys. Med. Biol., 50, N163–N173.
  26. Chow, J. C. L., & Jubran, S. (2023). Depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Micromachines, 14, 1230.
  27. McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., Prise, K. M., Hirst, D. G., & Currell, F. J. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother. Oncol., 100(3), 412–416.
  28. Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trend Pharmacol. Sci., 30(11), 592–599.
  29. Barreto, J. A., O’Malley, W., Kubeil, M., Graham, B., Stephan, H., & Spiccia, L. (2011). Nanomaterials: applications in cancer imaging and therapy. Adv. Mater., 23(12), 18–40.
  30. Carter, J. D., Cheng, N. N., Qu, Y., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B, 111, 11622–11625.
  31. Liu, C. -J., Wang, C. -H., Chen, S. -T., Chen, H. -H., Leng, W. -H., Chien, C. -C., Wang, C. -L., Kempson, M., Hwu, Y., Lai, T. -C., Hsiao, M., Yang, C. -S., Chen, Y. -J., & Margaritondo, G. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol., 55, 931–945.
  32. Zhao, P., Li, N., & Astruc, D. (2013). State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 257, 638–665.
  33. Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N., & Murphy, C. J. (2012). Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 64, 190–199.
  34. Gray, T., Bassiri, N., David, S., Patel, D. Y., Stathakis, S., Kirby, N., & Mayer, K. M. (2021). A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl. Radiat. Isot., 171, 109638.
  35. Khodaei, A., Moradi, F., Oresegum, A., Zubair, H. T., Bradley, D. A., Ibrahim, A. S., & Abdul Rashid, H. A. (2024). Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry. Biomed. Phys. Eng. Express, 10, 055034.
  36. Emfietzoglou, D., & Nikjoo, H. (2005). The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat. Res., 163(1), 98–111.
  37. Incerti, S., Kyriakou, I., Bernal, M. A., Bordage, M. C., Francis, Z., Guatelli, S., Ivanchenko, V., Karamitros, M., Lampe, N., Lee, S. B., Meylan, S., Min, C. H., Shin, W. G., Nieminen, P., Sakata, D., Tang, N., Villagrasa, C., Tran, H. N., & Brown, J. M. C. (2018). Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys., 45(8), 722–739.
  38. Moradi, F., Jalili, M., Rezaee Enrahim Saraee, Kh., Khandaker, M. U., & Bradley, D. A. (2022). Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiat. Phys. Chem., 200, 110278.
  39. Plante, I., & Cucinotta, F. A. (2009). Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte Carlo simulation of HZE radiation tracks. New J. Phys., 11, 63047.
  40. Faddegon, B., Ramos-Méndez, J., Schuemann, J., McNamara, A., Shin, J., Perl, J., & Paganetti, H. (2020). The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med., 72, 114–121.
  41. International Commission on Radiation Units and Measurements. (1989). Tissue substitutes in radiation units and measurement. Bethesda, USA: ICRU. (ICRU Report No. 44).
  42. Robar, J. L., Riccio, S. A., & Martin, M. A. (2002). Tumour dose enhancement using modified megavoltage photon beams and contrast media. Phys. Med. Biol., 47, 2433–2449.
  43. Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838.
DOI: https://doi.org/10.2478/nuka-2025-0008 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 79 - 85
Submitted on: Mar 10, 2025
Accepted on: Jun 4, 2025
Published on: Aug 22, 2025
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Taylan Tuğrul, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.