References
- Kakade, N. R., & Sharma, S. D. (2015). Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J. Cancer Res. Ther., 11, 94–97.
- Haume, K., Rosa, S., Grellet, S., Smialek, M. A., Butterworth, K. T., Solov’yov, A. V., Prise, K. M., Golding, J., & Mason, N. J. (2016). Gold nanoparticles for cancer radiotherapy: a review. Cancer Nano., 7, 8.
- Kwatra, D., Venugopal, A., & Anant, S. (2013). Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res., 2(4), 330–342.
- Kobayashi, K., Usami, N., Porcel, E., Lacombe, S., & Le Sech, C. (2010). Enhancement of radiation effect by heavy elements. Rev. Mutat. Res., 704(1/3), 123–131.
- Pan, Y., Leifert, A., Ruau, D., Neuss, S., Bornemann, J., Schmid, G., Brandau, W., Simon, U., & Jahnen Dechent, W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5(18), 2067–2076.
- Taggart, L. E., McMahon, S. J., Currell, F. J., Prise, K. M., & Butterworth, K. T. (2014). The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol., 5(1), 5.
- Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27(21), 215101.
- Kavanagh, J. N., Redmond, K. M., Schettino, G., & Prise, K. M. (2013). DNA double strand break repair: a radiation perspective. Antioxid. Redox Signal., 18(18), 2458–2472.
- Nikjoo, H., O’Neill, P., Wilson, W. E., & Goodhead, D. T. (2001). Computational approach for determining the spectrum of DNA damage induced by ionizing radiation. Radiat. Res., 156(5), 577–583.
- Emfietzoglou, D., Cucinotta, F. A., & Nikjoo, H. (2005). A complete dielectric response model for liquid water: a solution of the Bethe ridge problem. Radiat Res., 164(2), 202–211.
- Pan, X., Cloutier, P., Hunting, D., & Sanche, L. (2003). Dissociative electron attachment to DNA. Phys. Rev. Lett., 90, 208102.
- Porcel, E., Liehn, S., Remita, H., Usami, N., Kobayashi, K., Furusawa, Y., Le Sech, C., & Lacombe, S. (2010). Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21, 085103.
- Verkhovtsev, A. V., Korol, A. V., & Solov’yov, A. V. (2015). Electron production by sensitizing gold nanoparticles irradiated by fast ions. J. Phys. Chem. C, 119(20), 11000–11013.
- Butterworth, K. T., McMahon, S. J., Taggart, L. E., & Prise, K. M. (2013). Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl. Cancer Res., 2(4), 269–279.
- Moradi, F., Rezaee Enrahim Saraee, Kh., Abdul Sani, S. F., & Bradley, D. A. (2021). Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat. Phys. Chem., 180, 109294.
- Hainfeld, J. F., Dilmanian, F. A., Slatkin, D. N., & Smilowitz, H. M. (2008). Radiotherapy enhancement with gold nanoparticles. J. Pharm. Pharmacol., 60(8), 977–985.
- Taheri, A., Khandaker, M. U., Moradi, F., & Bradley, D. A. (2024). A simulation study on the radiosensitization properties of gold nanorods. Phys. Med. Biol., 69, 045029.
- He, W., Ma, G., Shen, Q., & Tang, Z. (2022). Engineering gold nanostructures for cancer treatment: spherical nanoparticles, nanorods, and atomically precise nanoclusters. Nanomaterials, 12, 1738.
- Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev., 109, 84–101.
- Çağlar, M., Eşitmez, D., & Cebe, M. S. (2024). The effect of dose enhancement in tumor with silver nanoparticles on surrounding healthy tissues: A Monte Carlo study. Technology in Cancer Research & Treatment, 23, 1–8.
- Wu, J. (2021). The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its application. J. Pers. Med., 11(8), 771–779.
- Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 46(8), 6387–6392.
- Mesbahi, A. (2010). A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep. Pract. Oncol. Radiother., 15(6), 176–180.
- Martelli, S., & Chow, J. C. L. (2020). Dose enhancement for the flattening-filter-free and flattening-filter photon beams in nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Nanomaterials, 10, 637.
- Cho, S. H. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Phys. Med. Biol., 50, N163–N173.
- Chow, J. C. L., & Jubran, S. (2023). Depth dose enhancement in orthovoltage nanoparticle-enhanced radiotherapy: A Monte Carlo phantom study. Micromachines, 14, 1230.
- McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., Prise, K. M., Hirst, D. G., & Currell, F. J. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiother. Oncol., 100(3), 412–416.
- Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trend Pharmacol. Sci., 30(11), 592–599.
- Barreto, J. A., O’Malley, W., Kubeil, M., Graham, B., Stephan, H., & Spiccia, L. (2011). Nanomaterials: applications in cancer imaging and therapy. Adv. Mater., 23(12), 18–40.
- Carter, J. D., Cheng, N. N., Qu, Y., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by X-ray absorbing nanostructures. J. Phys. Chem. B, 111, 11622–11625.
- Liu, C. -J., Wang, C. -H., Chen, S. -T., Chen, H. -H., Leng, W. -H., Chien, C. -C., Wang, C. -L., Kempson, M., Hwu, Y., Lai, T. -C., Hsiao, M., Yang, C. -S., Chen, Y. -J., & Margaritondo, G. (2010). Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol., 55, 931–945.
- Zhao, P., Li, N., & Astruc, D. (2013). State of the art in gold nanoparticle synthesis. Coord. Chem. Rev., 257, 638–665.
- Alkilany, A. M., Thompson, L. B., Boulos, S. P., Sisco, P. N., & Murphy, C. J. (2012). Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 64, 190–199.
- Gray, T., Bassiri, N., David, S., Patel, D. Y., Stathakis, S., Kirby, N., & Mayer, K. M. (2021). A detailed experimental and Monte Carlo analysis of gold nanoparticle dose enhancement using 6 MV and 18 MV external beam energies in a macroscopic scale. Appl. Radiat. Isot., 171, 109638.
- Khodaei, A., Moradi, F., Oresegum, A., Zubair, H. T., Bradley, D. A., Ibrahim, A. S., & Abdul Rashid, H. A. (2024). Evaluation of TOPAS MC tool performance in optical photon transport and radioluminescence-based dosimetry. Biomed. Phys. Eng. Express, 10, 055034.
- Emfietzoglou, D., & Nikjoo, H. (2005). The effect of model approximations on single-collision distributions of low-energy electrons in liquid water. Radiat. Res., 163(1), 98–111.
- Incerti, S., Kyriakou, I., Bernal, M. A., Bordage, M. C., Francis, Z., Guatelli, S., Ivanchenko, V., Karamitros, M., Lampe, N., Lee, S. B., Meylan, S., Min, C. H., Shin, W. G., Nieminen, P., Sakata, D., Tang, N., Villagrasa, C., Tran, H. N., & Brown, J. M. C. (2018). Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys., 45(8), 722–739.
- Moradi, F., Jalili, M., Rezaee Enrahim Saraee, Kh., Khandaker, M. U., & Bradley, D. A. (2022). Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiat. Phys. Chem., 200, 110278.
- Plante, I., & Cucinotta, F. A. (2009). Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte Carlo simulation of HZE radiation tracks. New J. Phys., 11, 63047.
- Faddegon, B., Ramos-Méndez, J., Schuemann, J., McNamara, A., Shin, J., Perl, J., & Paganetti, H. (2020). The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys. Med., 72, 114–121.
- International Commission on Radiation Units and Measurements. (1989). Tissue substitutes in radiation units and measurement. Bethesda, USA: ICRU. (ICRU Report No. 44).
- Robar, J. L., Riccio, S. A., & Martin, M. A. (2002). Tumour dose enhancement using modified megavoltage photon beams and contrast media. Phys. Med. Biol., 47, 2433–2449.
- Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838.