Have a personal or library account? Click to login
Determination of uranium concentration in blood samples of women with breast cancer in Babylon Province of Iraq using CR-39 nuclear track detector Cover

Determination of uranium concentration in blood samples of women with breast cancer in Babylon Province of Iraq using CR-39 nuclear track detector

Open Access
|Jun 2024

References

  1. Taboada, T., Martínez Cortizas, A., García, C., & García-Rodeja, E. (2006). Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ., 356(1/3), 192–206. https://doi.org/10.1016/j.scito-tenv.2005.03.030.
  2. Sánchez-González, S., Curto, N., Caravantes, P., & García-Sánchez, A. (2014). Natural gamma radiation and uranium distribution in soils and waters in the Agueda River Basin (Spain-Portugal). Procedia Earth and Planetary Science, 8, 93–97. https://doi.org/10.1016/j.proeps.2014.05.019.
  3. Mortvedt, J. J. (1994). Plant and soil relationships of uranium and thorium decay series radionuclides – a review. J. Environ. Qual., 23(4), 643–650. https://doi.org/10.2134/jeq1994.00472425002300040004x.
  4. Elless, M. P., & Lee, S. Y. (2018). Radionuclide-contaminated soils: A mineralogical perspective for their remediation. In B. Dixon & D. G. Schulze (Eds.), Soil mineralogy with environmental applications (Vol. 7, Chapter 25). https://doi.org/10.2136/sssabookser7.c25.
  5. Smedley, P. L., Smith, B., Abesser, C., & Lapworth, D. (2006). Uranium occurrence and behaviour in British groundwater. Keyworth, Nottingham: British Geological Survey. (Groundwater Programme Commissioned Report CR/06/050N).
  6. Luckett, L. W. (2006). Radiological conditions in areas of Kuwait with residues of depleted uranium. Health Phys., 90(2), 180–181. https://doi.org/10.1097/00004032-200602000-00011.
  7. International Atomic Energy Agency. (2010). Radiological conditions in selected areas of Southern Iraq with residues of depleted uranium. Vienna: IAEA. (STI/PUB/1434).
  8. Bersina, I. G., Brandt, R., Vater, P., Hinke, K., & Schütze, M. (1995). Fission track autoradiography as a means to investigate plants for their contamination with natural and technogenic uranium. Radiat. Meas., 24(3), 277–282. https://doi.org/10.1016/1350-4487(94)00099-M.
  9. Briner, W. (2010). The toxicity of depleted uranium. Int. J. Environ. Res. Public Health, 7(1), 303–313. https://doi.org/10.3390/ijerph7010303.
  10. Segovia, N., Olguín, M. E., & Romero, M. (1986). Studies of U in the blood of two population samples. Int. J. Radiat. Appl. Instrum., 12(1/6), 797–800. https://doi.org/10.1016/1359-0189(86)90705-3.
  11. Yazzie, M., Gamble, S. L., Civitello, E. R., & Stearns, D. M. (2003). Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem. Res. Toxicol., 16(4), 524–530. https://doi.org/10.1021/tx025685q.
  12. Periyakaruppan, A., Kumar, F., Sarkar, S., Sharma, C. S., & Ramesh, G. T. (2007). Uranium induces oxidative stress in lung epithelial cells. Arch. Toxicol., 81 (6), 389–395. https://doi.org/10.1007/s00204-006-0167-0.
  13. Au, W. W., Giri, A. K., & Ruchirawat, M. (2010). Challenge assay: A functional biomarker for exposure-induced DNA repair deficiency and for risk of cancer. Int. J. Hyg. Environ. Health, 213 (1), 32–39. https://doi.org/10.1016/j.ijheh.2009.09.002.
  14. Wilson, J., Zuniga, M. C., Yazzie, F., & Stearns, D. M. (2015). Synergistic cytotoxicity and DNA strand breaks in cells and plasmid DNA exposed to uranyl acetate and ultraviolet radiation. J. Appl. Toxicol., 35 (4), 338–349. https://doi.org/10.1002/jat.3015.
  15. Tawfiq, N. F., Ali, L. T., & Al-Jobouri, H. A. (2013). Uranium concentration measurements in human blood for some governorates in Iraq using CR-39 track detector. J. Radioanal. Nucl. Chem., 295(1), 671–674. https://doi.org/10.1007/s10967-012-2114-2.
  16. Henderson, P. (1978). (R. L.) Fleischer, (P. B.) Price, and (R. M.) Walker. Nuclear tracks in solids: Principles and applications. Berkeley and London (Univ. California Press), 1975. xxii + 605 pp., 205 figs., I pl. Price. Mineral. Mag., 42(322), 306–307. https://doi.org/10.1180/minmag.1978.042.322.40.
  17. Chabuk, A., Al-Ansari, N., Hussain, H. M., Laue, J., Hazim, A., Knutsson, S., & Pusch, R. (2019). Landfill sites selection using MCDM and comparing method of change detection for Babylon Governorate, Iraq. Environ. Sci. Pollut. Res., 26, 35325–35339.
  18. Carlson, R. V., Boyd, K. M., & Webb, D. J. (2004). The revision of the Declaration of Helsinki: Past, present and future. Br. J. Clin. Pharmacol., 57(6), 695–713. https://doi.org/10.1111/j.1365-2125.2004.02103.x.
  19. Al-Hamzawi, A. A., Jaafar, M. S., & Tawfiq, N. F. (2015). Concentration of uranium in human cancerous tissues of Southern Iraqi patients using fission track analysis. J. Radioanal. Nucl. Chem., 303(3), 1703–1709. https://doi.org/10.1007/s10967-014-3682-0.
  20. Al-Hamzawi, A. A., Jaafar, M. S., & Tawfiq, N. F. (2014). Uranium concentration in blood samples of Southern Iraqi leukemia patients using CR-39 track detector. J. Radioanal. Nucl. Chem., 299(3), 1267–1272. https://doi.org/10.1007/s10967-013-2808-0.
  21. Tommasino, L. (1987). Solid state nuclear track detection: Principles, methods and applications. Int. J. Radiat. Appl. Instrum. Pt. D-Nucl. Tracks Radiat. Meas., 13 (4), 289. https://doi.org/10.1016/1359-0189(87)90044-6.
  22. Khan, H. A., & Qureshi, A. A. (1994). Solid state nuclear track detection: A useful geological/geophysical tool. Nucl. Geophys., 8(1), 1–37.
  23. Singh, N. P., Singh, M., Singh, S., & Virk, H. S. (1986). A fission track technique used for biogeochemical prospecting in Northern India. J. Geochem. Explor., 26(3), 259–265. https://doi.org/10.1016/0375-6742(86)90076-2.
  24. Al-Hamzawi, A. A., Jaafar, M. S., & Tawfiq, N. F. (2014). The measurements of uranium concentration in human blood in selected regions in Iraq using CR-39 track detector. In Advanced Materials Research (Vol. 925, pp. 679–683). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.925.679.
  25. Handley-Sidhu, S., Keith-Roach, M. J., Lloyd, J. R., & Vaughan, D. J. (2010). A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium. Sci. Total Environ., 408 (23), 5690–5700. https://doi.org/10.1016/j.scitotenv.2010.08.028.
  26. Stojsavljević, A., Borković-Mitić, S., Vujotić, L., Grujičić, D., Gavrović-Jankulović, M., & Manojlović, D. (2019). The human biomonitoring study in Serbia: Background levels for arsenic, cadmium, lead, thorium and uranium in the whole blood of adult Serbian population. Ecotox. Environ. Safe., 169, 402–409. https://doi.org/10.1016/j.ecoenv.2018.11.043.
  27. Grison, S., Legendre, A., Svilar, L., Elie, C., Kereselidze, D., Gloaguen, C., Lestaevel, P., Martin, J.-Ch., & Souidi, M. (2022). Multigenerational exposure to uranium changes sperm metabolome in rats. Int. J. Mol. Sci., 23 (15), 8349. https://doi.org/10.3390/ijms23158349.
  28. Harada, K. H., Soleman, S. R., Ang, J. S. M., & Trzcinski, A. P. (2022). Conflict-related environmental damages on health: lessons learned from the past wars and ongoing Russian invasion of Ukraine. Environ. Health Prev., 27. https://doi.org/10.1265/ehpm.22-00122.
  29. Zhiltsov, S. S., Zonn, I. S., Aleksanyan, L. M., Markova, E. A., & Grishin, O. E. (2023). The environmental effect of military actions in Iraq. In The handbook of environmental chemistry (pp. 1–15). Berlin, Heidelberg: Springer. https://doi.org/10.1007/698_2023_976.
  30. Cooper, J. R., Stradling, G. N., Smith, H., & Ham, S. E. (1982). The behaviour of uranium-233 oxide and uranyl-233 nitrate in rats. Int. J. Radiat. Biol., 41 (4), 421–433. https://doi.org/10.1080/09553008214550461.
  31. Wils, R. S., Jacobsen, N. R., Vogel, U., Roursgaard, M., Jensen, A., & Møller, P. (2023). Pleural inflammatory response, mesothelin content and DNA damage in mice at one-year after intra-pleural carbon nanotube administration. Toxicology, 499, 153662. https://doi.org/10.1016/j.tox.2023.153662.
  32. Rahman, H. H., Toohey, W., & Munson-McGee, S. H. (2023). Association of urinary arsenic, polycyclic aromatic hydrocarbons, and metals with cancers among the female population in the US. Toxicol. Appl. Pharmacol., 480, 116746. https://doi.org/10.1016/J.TAAP.2023.116746.
  33. Rasheed, Z. A., & Salman, A. D. (2023). Uranium concentration in blood samples of leukemia children. AIP Conf. Proc., 2830, 020014. https://doi.org/10.1063/5.0156802.
  34. Obaed, H. K., & Aswood, M. S. (2020). Estimated of U, Rn and Po concentrations in smokers blood samples collected from Babylon, Iraq. IOP Conf. Ser.-Mater. Sci. Eng., 928, 072043. https://doi.org/10.1088/1757-899X/928/7/072043.
  35. Showard, A. F., & Aswood, M. S. (2020). Effect of gender and occupations on uranium concentration in human blood and soil samples collected from Babylon, Iraq. Pol. J. Med. Phys. Eng., 26(3), 143–148. https://doi.org/10.2478/pjmpe-2020-0016.
  36. Ivanenko, N. B., Ivanenko, A. A., Solovyev, N. D., Zeimal, A. E., Navolotskii, D. V., & Drobyshev, E. J. (2013). Biomonitoring of 20 trace elements in blood and urine of occupationally exposed workers by sector field inductively coupled plasma mass spectrometry. Talanta, 116, 764–769. https://doi.org/10.1016/j.talanta.2013.07.079.
  37. Rice, D. C., Lincoln, R., Martha, J., Parker, L., Pote, K., Xing, S., & Smith, A. E. (2010). Concentration of metals in blood of Maine children 1-6 years old. J. Expo. Sci. Environ. Epidemiol., 20(7), 634–643. https://doi.org/10.1038/jes.2010.42.
DOI: https://doi.org/10.2478/nuka-2024-0021 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 143 - 149
Submitted on: Aug 6, 2023
Accepted on: Feb 20, 2024
Published on: Jun 29, 2024
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Haider O. Essa, Khalid H. H. Al-Attiyah, Anees A. Al-Hamzawi, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.