References
- Khoylou, F., & Katbab, A. A. (1993). Radiation degradation of polypropylene. Radiat.Phys. Chem., 42(1/3), 219–222. DOI: 10.1016/0969-806X(93)90238-P.
- Carlsson, D. J., Dobbin, C. J., Jensen, J. P., & Wiles, D. M. (1985). Polypropylene degradation by γ-irradiation in air. In P. P. Klemchuk (Ed.), Polymer stabilization and degradation (pp. 359–371). American Chemical Society
- Hegazy, E.-S. A., Zahran, A. H., Al-Diab, S. S., & Salama, J. (1986). Radiation effect on stabilized polypropylene. Radiat. Phys. Chem., 27(2), 139–144. DOI: 10.1016/1359-0197(86)90146-3.
- Zimniewska, M. (2022). Hemp fibre properties and processing target textile: A review. Materials, 15 (5), 1901. DOI: 10.3390/ma15051901.
- Sirin, M., Zeybek, M. S., Sirin, K., & Abali, Y. (2022). Effect of gamma irradiation on the thermal and mechanical behaviour of polypropylene and polyethylene blends. Radiat. Phys. Chem., 194, 110034. DOI: 10.1016/j.radphyschem.2022.110034.
- Fathy, E. S., Ibrahim, S., Elnaggar, M. Y., Fahmy, H., & Lotfy, S. (2024). Polypropylene based bio-composites for packaging materials: Physico-mechanical impacts of prepared hyper-branched polyamidoamine and gamma-irradiation. J. Thermoplast. Compos. Mater., 37(1), 66–83. DOI: 10.1177/08927057231169902.
- Horne, M. R. L. (2020). Bast fibres: Hemp cultivation and production. In R. M. Kozlowski & M. Mackiewicz-Talarczyk (Eds.), Handbook of natural fibres (pp. 163–196). Woodhead Publishing.
- Manaia, J. P., Manaia, A. T., & Rodriges, L. (2019). Industrial hemp fibers: An overview. Fibers, 7 (12), 106. DOI: 10.3390/fib7120106.
- Shahzad, A. (2012). Hemp fiber and its composites – a review. J. Compos. Mater., 46(8), 973–986. DOI: 10.1177/0021998311413623.
- Niu, P., Liu, B., Wei, X., Wang, X., & Yang, J. (2011). Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. J. Reinf. Plast. Compos., 30(1), 36–44. DOI: 10.1177/0731684410383067.
- Hargitai, H. H., Rácz, I., & Anandjiwala, R. D. (2008). Development of hemp fiber reinforced polypropylene composites. J. Thermoplast. Compos. Mater., 21 (2), 165–174. DOI: 10.1177/0892705707083949.
- Malinowski, R., Raszkowska-Kaczor, A., Moraczew-ski, K., Głuszewski, W, Krasinskyi, V, & Wedderburn, L. (2021). The structure and mechanical properties of hemp fibers-reinforced poly(ε-caprolactone) composites modified by electron beam irradiation. Appl. Sci.-Basel, 11 (12), 5317. DOI: 10.3390/app11125317.
- Freeman, G. R. (1960). Radiolysis of cyclohexane. I. Pure liquid cyclohexane and cyclohexane–ben-zene solution. J. Chem. Phys., 33(1), 71–78. DOI: 10.1063/1.1731137.
- Głuszewski, W., & Zagórski, Z. P. (2008). Radiation effects in polypropylene/polystyrene blends as the model of aromatic protection effects. Nukleonika, 53(Suppl. 1), 21–24.
- Głuszewski, W., Zagórski, Z. P, & Rajkiewicz, M. (2014). Protective effects in radiation modification of elastomers. Radiat. Phys. Chem., 105, 53–56. DOI: 10.1016/j.radphyschem.2014.06.024.
- Głuszewski, W. (2007). Protective phenomena in the radiation chemistry of polypropylene. PhD thesis, Institute of Nuclear Chemistry and Technology, Warsaw.
- Głuszewski, W. (2021). GC investigation of post irradiation oxidation phenomena on polypropylene. Nukleonika, 66(4), 187–192. DOI: 10.2478/nuka-2021-0027.
- Głuszewski, W. (2019). The use of gas chromatography for the determination of radiolytic molecular hydrogen, the detachment of which initiates secondary phenomena in the radiation modification of polymers. Polimery, 64(10), 697–702. DOI: dx.doi. org/10.14314/polimery.2019.10.7.