Have a personal or library account? Click to login
Study of a Compton backscattering wall defects detection device using the Monte Carlo method Cover

Study of a Compton backscattering wall defects detection device using the Monte Carlo method

By: Xuan Qin,  Jianbo Yang,  Zhengcong Du,  Jie Xu,  Rui Li,  Hui Li and  Qi Liu  
Open Access
|Apr 2023

Abstract

In view of the shortcomings of traditional wall defect detection methods, such as small detection range, poor accuracy, non-portable device, and so on, a wall defects detection device based on Compton backscattering technology is designed by Monte Carlo method, which is mainly used to detect the size and location information of defects in concrete walls. It mainly consists of two parts, the source container and the detection system: first, through the simulation and analysis of the parameters such as the receiving angle of the backscattered particles and the rear collimating material of the detector, the influence of the fluorescent X-ray peak of the detector collimating material on the backscattered particle counts is eliminated and the detected error is reduced; second, the ring array detector design, compared with single array detector and surface array detector, can facilitate real-time detection of defect orientation, expanding the single scan range and improving the detection efficiency. After simulation and comparative analysis, the relevant optimal parameters are obtained: the object is detected using a Cs-137 γ-ray source with an activity of 6 mCi, and a ring detector consisting of four 0.5-inch cube-shaped CsI scintillator detectors is placed at 150° to receive the backscattered photons. The simulation analysis using the Monte Carlo FLUKA program showed that the maximum depth of wall defect detection is 8 cm, the maximum error fluctuation range of defect depth and thickness is ±1 cm, the overall device weight is <20 kg, and the measurement time is <5 min.

DOI: https://doi.org/10.2478/nuka-2023-0008 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 57 - 63
Submitted on: Apr 11, 2022
Accepted on: Dec 15, 2022
Published on: Apr 25, 2023
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Xuan Qin, Jianbo Yang, Zhengcong Du, Jie Xu, Rui Li, Hui Li, Qi Liu, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.