Have a personal or library account? Click to login
Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experiments Cover

Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experiments

Open Access
|Apr 2023

References

  1. Donnan, F. G. (1923). Rays of positive electricity and their application to chemical analyses. By Sir J. J. Thomson, O. M. F. R. S. (2nd ed.). Pp. x + 237. London: Longmans, Green and Co., 1921. Price 16s. Journal of the Society of Chemical Industry, 42(36), 861–861. <a href="https://doi.org/10.1002/JCTB.5000423614." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/JCTB.5000423614.</a>
  2. Daido, H., Nishiuchi, M., Pirozhkov, A. S., Fernández, J. C., Albright, B. J., Beg, F. N., & Badziak, J. (2018). Laser-driven ion acceleration: methods, challenges and prospects. J. Phys.-Conf. Series, 959(1), 012001. <a href="https://doi.org/10.1088/1742-6596/959/1/012001." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1742-6596/959/1/012001.</a>
  3. Margarone, D., Krása, J., Giuffrida, L., Picciotto, A., Torrisi, L., Nowak, T., Musumeci, P., Velyhan, A., Prokůpek, J., Láska, L., Mocek, T., Ullschmied, J., & Rus, B. (2011). Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys., 109, 103302. <a href="https://doi.org/10.1063/1.3585871." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.3585871.</a>
  4. Salvadori, M., Consoli, F., Verona, C., Cipriani, M., Anania, M. P., Andreoli, P. L., Antici, P., Bisesto, F., Costa, G., Cristofari, G., de Angelis, R., di Giorgio, G., Ferrario, M., Galletti, M., Giulietti, D., Migliorati, M., Pompili, R., & Zigler, A. (2021). Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci. Rep., 11(1), 1–16. <a href="https://doi.org/10.1038/s41598-021-82655-w." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-021-82655-w.</a>
  5. Raczka, P., Nowosielski, L., Rosiński, M., Makaruk, D., Makowski, J., Zaraś-Szydłowska, A., Tchórz, P., & Badziak, J. (2019). Measurement of the electric field strength generated in the experimental chamber by 10 TW femtosecond laser pulse interaction with a solid target. J. Instrum., 14(04). <a href="https://doi.org/10.1088/1748-0221/14/04/P04008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1748-0221/14/04/P04008.</a>
  6. Carroll, D. C., Brummitt, P., Neely, D., Lindau, F., Lundh, O., Wahlström, C. G., & McKenna, P. (2010). A modified Thomson parabola spectrometer for high resolution multi-MeV ion measurements-Application to laser-driven ion acceleration. Nucl. Instrum. Methods Phys. Res.-Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 620(1), 23–27. <a href="https://doi.org/10.1016/J.NIMA.2010.01.054." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.NIMA.2010.01.054.</a>
  7. Wagner, F., Deppert, O., Brabetz, C., Fiala, P., Kleinschmidt, A., Poth, P., Schanz, V. A., Tebartz, A., Zielbauer, B., Roth, M., Stöhlker, T., & Bagnoud, V. (2016). Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002. <a href="https://doi.org/10.1103/PhysRevLett.116.205002." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1103/PhysRevLett.116.205002.</a>
  8. Alejo, A., Gwynne, D., Doria, D., Ahmed, H., Carroll, D. C., Clarke, R. J., Neely, D., Scott, G. G., Borghesi, M., & Kar, S. (2016). Recent developments in the Thomson parabola spectrometer diagnostic for laser-driven multi-species ion sources. J. Instrum., 11(10), C10005. <a href="https://doi.org/10.1088/1748-0221/11/10/C10005." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1748-0221/11/10/C10005.</a>
  9. Kojima, S., Inoue, S., Hung Dinh, T., Hasegawa, N., Mori, M., Sakaki, H., Yamamoto, Y., Sasaki, T., Shiokawa, K., Kondo, K., Yamanaka, T., Hashida, M., Sakabe, S., Nishikino, M., & Kondo, K. (2020). Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions Rev. Sci. Instrum., 91, 53305. <a href="https://doi.org/10.1063/5.0005450." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/5.0005450.</a>
  10. Woryna, E., Parys, P., Wołowski, J., & Mróz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams, 14(3), 293–321. <a href="https://doi.org/10.1017/S0263034600010053." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1017/S0263034600010053.</a>
  11. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. <a href="https://doi.org/10.1063/1.1350569." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.1350569.</a>
  12. Chodukowski, T., Borodziuk, S., Rusiniak, Z., Cikhardt, J., Jach, K., Krasa, J., Rosinski, M., Terwinska, D., Dudzak, R., Pisarczyk, T., Swierczynski, R., Burian, T., Tchorz, P., Dostal, J., Szymanski, M., Pfeifer, M., Skala, J., Singh, S., Krupka, M., & Krus, M. (2020). Neutron production in cavity pressure acceleration of plasma objects. AIP Adv., 10(8), 085206. <a href="https://doi.org/10.1063/5.0005977." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/5.0005977.</a>
  13. Green, B. D., & Goela, J. S. (1986). Ablative acceleration of small particles to high velocity by focused laser radiation. JOSA B, 3(1), 8–14. <a href="https://doi.org/10.1364/JOSAB.3.000008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1364/JOSAB.3.000008.</a>
  14. Borodziuk, S., Kasperczuk, A., & Pisarczyk, T. (2009). Cavity pressure acceleration: An efficient laser-based method of production of high-velocity macroparticles. Appl. Phys. Lett., 95, 231501. <a href="https://doi.org/10.1063/1.3271693." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.3271693.</a>
DOI: https://doi.org/10.2478/nuka-2023-0005 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 29 - 36
Submitted on: Aug 31, 2022
Accepted on: Nov 16, 2022
Published on: Apr 3, 2023
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Przemysław Tchórz, Maciej Szymański, Marcin Rosiński, Tomasz Chodukowski, Stefan Borodziuk, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.