Have a personal or library account? Click to login
Structure and local parameters of self-compressed plasma streams in external magnetic field Cover

Structure and local parameters of self-compressed plasma streams in external magnetic field

Open Access
|Apr 2023

References

  1. Garkusha, I. E., Makhlai, V. A., Petrov, Yu. V., Herashchenko, S. S., Ladygina, M. S., Aksenov, N. N., Byrka, O. V., Chebotarev, V. V., Kulik, N. V., Staltsov, V. V., & Pestchanyi, S. (2021). Vapour shielding of liquid-metal CPS-based targets under ELM-like and disruption transient loading. Nucl. Fusion, 61, 116040. DOI: <a href="https://doi.org/10.1088/1741-4326/ac26ec." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/1741-4326/ac26ec.</a>
  2. Zdunek, K. (1995). Spreading of impulse plasma within a coaxial accelerator. Surf. Coat. Technol., 74/75, 949–952. DOI: <a href="https://doi.org/10.1016/0257-8972(95)80038-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0257-8972(95)80038-7.</a>
  3. Zdunek, K., & Karwat, T. (1996). Distribution of magnetic field in the coaxial accelerator of impulse plasma. Vacuum, 47(11), 1391–1394. DOI: <a href="https://doi.org/10.1016/S0042-207X(96)00180-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0042-207X(96)00180-7.</a>
  4. Garkusha, I. E., Cherednychenko, T. N., Ladygina, M. S., Makhlay, V. V., Petrov, Yu. V., Solyakov, D. G., Staltsov, V. V., Yelisyeyev, D. V., & Hassanein, A. (2014). EUV radiation from pinching discharges of magnetoplasma compressor type and its dependence on the dynamics of compression zone formation. Phys. Scr. T, 161, 014037. DOI: <a href="https://doi.org/10.1088/0031-8949/2014/T161/014037." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0031-8949/2014/T161/014037.</a>
  5. Solyakov, D. G., Petrov, Y. V., Garkusha, I. E., Chebotarev, V. V., Ladygina, M. S., Cherednichenko, T. N., Morgal’, Ya. I., Kulik, N. V., Staltsov, V. V., & Eliseev, D. V. (2013). Formation of the compression zone in a plasma flow generated by a magnetoplasma compressor. Plasma Phys. Rep., 39, 986–992. DOI: <a href="https://doi.org/10.1134/S1063780X13110081." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1134/S1063780X13110081.</a>
  6. Bandura, A. N., Byrka, O. V., Garkusha, I. E., Ladygina, M. S., Marchenko A. K., Makhlay, V. A., & Tereshin, V. I. (2011). Characteristics of plasma streams and optimization of operational regimes for magnetoplasma compressor. Probl. Atom. Sci. Techn., 1(17), 68–70.
  7. Cherednychenko, T. N., Garkusha, I. E., Chebotarev, V. V., Solyakov, D. G., Petrov, Yu. V., Ladygina, M. S., Eliseev, D. V., & Chuvilo, A. A. (2013). Local magnetohydrodynamic characteristics of the plasma stream generated by MPC. Acta Polytech., 53(2), 131–133. DOI: <a href="https://doi.org/10.14311/1733." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14311/1733.</a>
  8. Ladygina, M. S., Marchenko, A. K., Solyakov, D. G., Petrov, Yu. V., Makhlaj, V. A., Yeliseyev, D. V., Garkusha, I. E., & Cherednichenko, T. N. (2016). Dynamics of self-compressed argon and helium plasma streams in the MPC facility. Phys. Scr., 91(7), 074006. DOI: <a href="https://doi.org/10.1088/0031-8949/91/7/074006." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0031-8949/91/7/074006.</a>
  9. Astashynski, V. M., Bakanovich, G. I., Kuz’mitskii, A. M., & Min’ko, L. Ya. (1992). Choice of operating conditions and plasma parameters of a magnetoplasma compressor. J. Eng. Phys. Thermophys., 62(3), 386–390. DOI: <a href="https://doi.org/10.1007/BF00851755." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF00851755.</a>
  10. Giovannini, A. Z., Barendregt, I., Haslinde, T., Hubbs, C., & Abhari, R. S. (2015). Self-confined plasma in a magneto-plasma compressor and the influence of an externally imposed magnetic field. Plasma Sources Sci. Technol., 24, 025007. DOI: <a href="https://doi.org/10.1088/0963-0252/24/2/025007." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0963-0252/24/2/025007.</a>
  11. Solyakov, D. G., Volkova, Yu. Ye., Ladygina, M. S., Merenkova, T. M., Marchenko, A. K., Garkusha, I. E., Petrov, Yu. V., Chebotarev, V. V., Makhlai, V. A., Kulik, M. V., Staltsov, V. V., & Yeliseyev, D. V. (2021). Distributions of magnetic field and current in pinching plasma flows: axial magnetic field effect. Eur. Phys. J. Plus, 136, 566. DOI: <a href="https://doi.org/10.1140/epjp/s13360-021-01170-z." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1140/epjp/s13360-021-01170-z.</a>
  12. Solyakov, D. G., Volkova, Yu. Ye., Garkusha, I. E., Marchenko, A. K., Ladygina, M. S., Staltsov, V. V., Petrov, Yu. V., Chebotarev, V. V., Merenkova, T. M., Lakhlai, V. A., & Yeliseyev, D. V. (2021). Measurement of the local electron temperature in self-compressed plasma stream. Probl. Atom. Sci. Techn., 4(134), 149–153. DOI: <a href="https://doi.org/10.46813/2021-134-149." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.46813/2021-134-149.</a>
  13. Baksht, F. G., & Rybakov, A. B. (1997). A theory of probes in high-pressure strongly-ionized plasmas. Tech. Phys., 42, 1385–1389. DOI: <a href="https://doi.org/10.1134/1.1258882." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1134/1.1258882.</a>
  14. Zhovtyansky, V. A., & Kolesnikova, E. P. (2013). The study of the near-wall layer in the dense plasma. Probl. Atom. Sci. Techn., 1(83), 240–242.
  15. Zhovtyansky, V. A., Kolesnikova, E. P., Lelyukh, Y. I., & Goncharuk, Y. A. (2012). Peculiarities of heat and mass transfer processes in the near-wall region of dense plasma: Studies based on the use of electric probes. Energy Technologies and Resource Saving, 6, 4–16. (in Russian).
  16. Demidov, V. I., Ratynskaia, S. V., & Rypdal, K. (2002). Electric probes for plasmas: The link between theory and instrument. Rev. Sci. Instrum., 73(10), 3409–3439. DOI: <a href="https://doi.org/10.1063/1.1505099." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.1505099.</a>
  17. Popov, T. S. V. K., Dimitrova, M., Pedrosa, M. A., López-Bruna, D., Horacek, J., Kovačič, J., Dejarnac, R., Stöckel, J., Aftanas, M., Böhm, P., Bílkova, P., Hidalgo, C., & Panek, R. (2015). Bi-Maxwellian electron energy distribution function in the vicinity of the last closed flux surface in fusion plasma. Plasma Phys. Control. Fusion, 57(11), 115011. DOI: <a href="https://doi.org/10.1088/0741-3335/57/11/115011." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1088/0741-3335/57/11/115011.</a>
DOI: https://doi.org/10.2478/nuka-2023-0001 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 3 - 9
Submitted on: Sep 22, 2022
Accepted on: Nov 24, 2022
Published on: Apr 3, 2023
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Yuliia Volkova, Dmytro Solyakov, Anna Marchenko, Volodymyr Chebotarev, Igor Garkusha, Vadym Makhlai, Maryna Ladygina, Tetyana Merenkova, Dmytro Yeliseyev, Yurii Petrov, Valerii Staltsov, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.