Israeli, E., & Gilad, E. (2017). Novel genetic algorithms for loading pattern optimization using state-of-the-art operators and a simple test case. J. Nucl. Eng. Radiat. Sci., 3(3), 1–10. DOI: 10.1115/1.4035883.
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Guest editorial. Mach. Learn., 3(2), 95–99. DOI: 10.1007/BF01920603.
Jayalal, M. L., Murty, S. A. V. S., & Baba, M. S. (2014). A survey of genetic algorithm applications in nuclear fuel management. J. Nucl. Eng. Technol., 4(1), 45–62.
Pereira, C. M. N. A., Schirru, R., & Martinez, A. S. (2000). Genetic algorithms applied to nuclear reactor design optimization. In Da Ruan (Ed.), Fuzzy systems and soft computing in nuclear engineering (pp. 315–334). Springer. https://doi.org/10.1007/9783-7908-1866-6_14.
Martín-del-Campo, C., Palomera-Pérez, M. Á., & François, J. L. (2009). Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization. Ann. Nucl. Energy, 36(10), 1553–1559. https://doi.org/10.1016/j.anucene.2009.07.013.
Khoshahval, F., & Fadaei, A. (2012). Application of a hybrid method based on the combination of genetic algorithm and Hopfield neural network for burnable poison placement. Ann. Nucl. Energy, 47, 62–68. DOI: 10.1016/j.anucene.2012.04.020.
Yilmaz, S., Ivanov, K., Levine, S., & Mahgerefteh, M. (2006). Application of genetic algorithms to optimize burnable poison placement in pressurized water reactors. Ann. Nucl. Energy, 33(5), 446–456. DOI: 10.1016/j.anucene.2005.11.012.
Huo, X., & Xie, Z. (2005). A novel channel selection method for CANDU refuelling based on the BPANN and GA techniques. Ann. Nucl. Energy, 32(10), 1081–1099. DOI: 10.1016/j.anucene.2005.03.003.
Mishra, S., Modak, R. S., & Ganesan, S. (2009). Optimization of thorium loading in fresh core of Indian PHWR by evolutionary algorithms. Ann. Nucl. Energy, 36(7), 948–955. DOI: 10.1016/j.anucene.2009.03.003.
Massachusetts Institute of Technology. (2018). BEAVRS – Benchmark for Evaluation and Validation of Reactor Simulations. Rev. 2.0.2. MIT Computational Reactor Physics Group. Available from https://crpg.mit.edu/sites/default/files/css_injector_images_image/BEAVRS_2.0.2_spec.pdf.
Kubiński, W., Darnowski, P., & Chęć, K. (2021). The development of a novel adaptive genetic algorithm for the optimization of fuel cycle length. Ann. Nucl. Energy, 155, art. ID 108153. DOI: 10.1016/j.anucene.2021.108153.
Downar, T., Xu, Y., Seker, V., & Hudson, N. (2010). PARCS v3.0 U.S. NRC Core Neutronics Simulator. User manual. USNRC. Available from https://www.nrc.gov/docs/ML1016/ML101610098.pdf.
Darnowski, P., & Pawluczyk, M. (2019). Analysis of the BEAVRS PWR benchmark using SCALE and PARCS. Nukleonika, 64(3), 87–98. DOI: 10.2478/nuka-2019-0011.
US Nuclear Regulatory Commission. (2005). Westinghouse technology systems manual. Section 2.2 – Power distribution limits. Rev 0508. USNRC. Available from https://www.nrc.gov/docs/ML1122/ML11223A208.pdf.