Quade, R. N., & McMain, A. T. (1975). Hydrogen production with a high-temperature gas-cooled reactor (HTGR). In T. N. Veziroglu (Ed.), Hydrogen energy (pp. 137–154). New York: Plenum Press.
Chao Fang, C., Morris, R., & Li, F. (2017). Safety features of high temperature gas cooled reactor. Sci. Technol. Nucl. Install., 2017, art. ID 9160971. DOI: 10.1155/2017/9160971.
Verfondern, K., Nabielek, H., & Kendall, J. M. (2007). Coated particle fuel for high temperature gas cooled reactors. Nucl. Eng. Technol., 39, 603–616. DOI: 10.5516/NET.2007.39.5.603.
De Souza, A. L., Cotrim, M. E. B., & Pires, M. A. F. (2013). An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem. J., 106, 194–201. DOI: 10.1016/j.microc.2012.06.015.
Sadikov, I. I., Rakhimov, A. V., Salimov, M. I., Zinov’ev, V. G., Mukhamedshina, N. M. F., & Tashimova, A. (2009). Neutron activation analysis of pure uranium: Preconcentration of impurity elements. J. Radioanal. Nucl. Chem., 280, 489–493. DOI: 10.1007/s10967-008-7389-y.
Oliveira Junior, O. P., & Sarkis, J. E. S. (2002). Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method. J. Radioanal. Nucl. Chem., 254, 519–526. DOI: 10.1023/A:1021642122066.
Bürger, S., Riciputi, L. R., & Bostick, D. A. (2007). Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method. J. Radioanal. Nucl. Chem., 274, 491–505. DOI: 10.1007/s10967-006-6930-0.
Saha, A., Kumari, K., Deb, S. B., & Saxena, M. K. (2021). Determination of critical trace impurities in “uranium silicide dispersed in aluminium” nuclear fuel by inductively coupled plasma mass spectrometry (ICP-MS). J. Anal. At. Spectrom., 36, 561–569. DOI: 10.1039/D0JA00391C.
Bode, P. (1996). Instrumental and organizational aspects of a neutron activation analysis laboratory. Delft, The Netherlands: Delft University of Technology.
Greenberg, R. R., Bode, P., & De Nadai Fernandes, E. A. (2011). Neutron activation analysis: A primary method of measurement. Spectroc. Acta Pt. B-Atom. Spectr., 66(3/4), 193–241. DOI: 10.1016/j.sab.2010.12.011.
Chajduk, E., Kalbarczyk, P., Dudek, J., Pyszynska, M., Bojanowska-Czajka, A., & Samczyński, Z. (2020). Development of analytical procedures for chemical characterization of substrates for the production of TRISO coated particles as nuclear fuel in high temperature gas-cooled reactors. Sustainability, 12(17), 7221–7234. DOI: 10.3390/su12177221.
Brykała, M., Rogowski, M., Wawszczak, D., Olczak, T., & Smoliński, T. (2020). Microspheres and pellets of UO2 prepared via ADU by complex sol-gel process and ICHTJ process. Arch. Metall. Mater., 65(4), 1397–1404. DOI: 10.24425/amm.2020.133706.
Deptuła, A., Brykała, M., Rogowski, M., Smoliński, T., Olczak, T., Łada, W., Wawszczak, D., Chmielewski, A., & Goretta, K. C. (2014). Fabrication of uranium dioxide microspheres by classic and novel sol-gel processes. MRS Online Proceedings Library, 1683, 64–69. https://doi.org/10.1557/opl.2014.672.
National Institute of Standards and Technology (2012). Certificate of Analysis. Standard Reference Material 610. Available from https://www-s.nist.gov/srmors/certificates/610.pdf.