References
- Voigt, H. -D., Gehring, M., Rom, C., Weiwad, D., Rapthel, I., Reichwald, K., & Kakuschke, R. (1995) Patent WO96/17888 (PCT/DE1995/001732). Biodegradable thermoplastic materials and packaging containers made from them (by GMBH, R.J. Reynolds Tobacco GMBH).
- Jimenez, A., Fabra, M. J., Talens P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food Bioprocess Technol., 5, 2058–2076.
- Ishigaki, T., Kawagoshi, Y., Ike, M., & Fujita, M. (1999). Biodegradation of a polyvinyl-alcohol-starch blend plastic film. World J. Micr. Biot., 15, 321–327.
- Tang, Sh., Peng, Z., Xiong, H., & Tang, H. (2008). Effect of SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr. Polym., 72, 521–526.
- Zhou, J., Ma, Y., Ren, L., Tong, Z., Liu, J., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr. Polym., 76, 632–638.
- Rahmat, A. R., Rahman, W. A., Sin, L. T., & Yussuf, A. A. (2009). Approaches to improve compatibility of starch filled polymer system: A review. Mat. Sci. Eng. C, 29, 2370–2377.
- Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradability. Carbohydr. Polym., 85, 1–16.
- Abramowska, A., Cieśla, K. A., Buczkowski, M. J., Nowicki, A., & Głuszewski, W. J. (2015). The influence of ionizing radiation on the properties of starch-PVA films. Nukleonika, 60(3), 669–677. DOI:10.1515/nuka-2015-0088.
- Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym., 109, 171–179.
- Cieśla, K., Abramowska, A., Boguski, J., & Drewnik, J. (2017). The effect of PVA type and radiation treatment on the properties of starch-PVA films. Radiat. Phys. Chem., 141, 142–148. DOI:10.1016/jradphyschem.2017.06.015.
- Cano, A. I., Cháfer, M., Chiralt, A., & Gonzalez-Martinez, Ch. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food. Eng., 167, 59–64.
- Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blends. Carbohydr. Polym., 136, 441–448.
- Mathew, Sh., Jayakumar, A., Kumar, V. P., Mathew, J., & Radhakrishnan, E. K. (2019). One-step synthesis of eco-friendly boiled rice starch blended polyvinyl-alcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purpose. Int. J. Biol. Macromol., 139, 475–485.
- Tak, H. -Y., Yun, Y. -H., Lee, Ch. -M., & Yoon, S. -D. (2019). Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch. Carbohydr. Polym., 208, 261–268.
- Parvin, F., Khan, M., Saadat, A. H. M., Khan, M. A. H., Islam, J. M. M., Ahmed, M., & Gafur, M. A. (2011). Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend films. J. Polym. Environ., 19, 1013–1022.
- Senna, M. M., El-Shahat, H. A., & El Naggar, A. W. M. (2011). Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res., 18, 763–771.
- Naznin, M., Abedin, M. -Z., Khan, M. -A., & Gafur, M. D. (2012). Influence of Acacia Catechu extracts and urea and gamma irradiation on the mechanical properties of starch/PVA-based material. International Scholarly Research Network (ISRN) Polymer Science, 2012, 348685(8p). DOI:10.5402/2012/348685.
- Haji-Saeid, M., Sampa, M. H. O., & Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem., 76, 1535–1541.
- Silvestre, C., Pezzuto, M., Duraccio, D., Marra, A., & Cimmino, S. (2014). Exploiting nanotechnology and radiation technologies to develop new eco-sustainable nanomaterials for food packaging suitable for sterilization by irradiation. In Application processed nanomaterials in products from polymers for agricultural applications (pp. 99–104). Vienna: IAEA. (IAEA-TECDOC-1745).
- Silvestre, C., Cimmino, S., Stoleru, E., & Vasile, C. (2017). Application of radiation technology to food packaging. In Y. Sun & A. G. Chmielewski (Eds.), Application of ionizing radiation in materials processing (pp. 461–484). Warsaw: Institute of Nuclear Chemistry and Technology.
- Farkas, J. (1998). Irradiation as a method for decontaminating food. A review. Int. J. Food Microbiol., 44, 189–204.
- Giroux, M., & Lacroix, M. (1998). Nutritional adequacy of irradiated meat – a review. Food Res. Int., 31(4), 257–264.
- Farkas, J. (2006). Irradiation for better foods. Trends Food Sci. Technol., 17, 148–152.
- World Health Organization. (1995). International Consutative Group on Food Irradiation. Review of data of high dose (10–70 kGy) irradiation of food: report of a consultation, Karlsruhe, 29 August – 2 September 1994. WHO. (WHO/FNU/FOS/95.10).
- Al-Kaisey, M. T., Alvan, A. -K. H., Mohammad, M. H., & Saeed, A. H. (2003). Effect of gamma irradiation on anti-nutritional factors in broad bean. Radiat. Phys. Chem., 67, 493–496.
- Kim, J. -H., Kim, D. -H., Ahn, H. -J., Park, H. -J., & Byun, M. W. (2005). Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control, 16, 43–49.
- Lee, J. -W., Kim, J. -H., Oh, S. -H., Byun, E. -H., Yook, H. -S., Kim, M. -R., Kim, K. -S., & Byun, M. -W. (2008) Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density. Radiat. Phys. Chem., 77, 352–365.
- Cieśla, K. A., Nowicki, A., & Buczkowski, M. J. (2010). Radiation modification of the functional properties of the edible films prepared using starch and starch-lipid system. Nukleonika, 55(2), 233–242.
- Ibrahim, S. M. (2011). Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clay. J. Appl. Polym. Sci., 119, 685–692.
- Ryzhkova, A., Jarzak, U., Schäffer, A., Bämer, M., & Swiderek, P. (2011). Modification of surface properties of thin polysaccharide films by low energy electron exposure. Carbohydr. Polym., 83, 608–615. DOI: 10.1016/j.carbpol.2010.08.029.
- Stoica-Guzun, A., Stroescu, M., Jipa, I., Dobre, L., & Zaharescu, T. (2013). Effect of γ irradiation on poly(vinylalcohol) and bacterial cellulose composites used as packaging. Radiat. Phys. Chem., 84, 200–204.
- Wang, Sh. -M., Huang, Q. -Z., & Wang, Q. -Sh. (2005). Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohydr. Res., 340(6) 1143–1147.
- Głuszewski, W., Boruc, B., Kubera, H., & Abbasowa, D. (2015). The use of DRS and GC to studies the effects of ionizing radiation on paper artifacts. Nukleonika, 60(3), 665–668. DOI:10.1515/nuka-2015-0090.
- Zagórski, Z. P., & Rafalski, A. (1998). Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem., 52, 257–260.
- Milosavljevic, B. H., & Thomas, J. K. (2001) Effects of the degree of hydrolysis on radiation induced reactions in the poly(vinyl alcohol)–poly(vinyl acetate) system. Radiat. Phys. Chem., 62, 3–10.
- von Sontag, C. (2001). Carbohydrates. In: C. D. Jonah & B. S. M. Rao (Eds.), Radiation chemistry. Present status and future trends (pp. 481–511). Amsterdam: Elsevier Sciences BV.
- Relleve, L., Nagasawa, N., Luan, L. Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., & dela Rosa, A. (2005). Degradation of carrageenan by radiation. Polym. Degrad. Stabil., 87, 403–410. DOI:10.1016/j.polymdegradstab.2004.09.003.
- Sharpatyi, V. A. (2003). Radiation chemistry of polysaccharides. 1. Mechanism of carbon monoxide and formic acid formation. High. Energ. Chem., 37(6), 369–372.
- Cao, Sh., Zhang, H., Song, Y., Zhang, J., Yang, H., Jiang, L., & Dan, Y. (2015). Investigation of polypyr-role/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications. Appl. Surf. Sci., 342(1), 55–63.
- Akhter, S., Allan, K., Buchanan, D., Cook, J. A., Campion, A., & White, J. M. (1988). XPS and IR study of X-ray induced degradation of PVA polymer film. Appl. Surf. Sci., 35(2), 241–258. https://doi.org/10.1016/0169-4332(88)90053-0.
- El-Sawy, N. M., El-Arnaouty, M. B., & Abdel, G. (2010). γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polym. Plast. Technol. Eng., 49(2), 169–177.
- Zainuddin, , Hill, D. J. T., & Le, T. T. (2001). An ESR study on γ-irradiated poly(vinyl alcohol). Radiat. Phys. Chem., 62, 283–291.