Have a personal or library account? Click to login
The influence of electron and gamma irradiation on the properties of starch:PVA films – the effect of irradiation dose Cover

The influence of electron and gamma irradiation on the properties of starch:PVA films – the effect of irradiation dose

Open Access
|Mar 2021

References

  1. Voigt, H. -D., Gehring, M., Rom, C., Weiwad, D., Rapthel, I., Reichwald, K., & Kakuschke, R. (1995) Patent WO96/17888 (PCT/DE1995/001732). Biodegradable thermoplastic materials and packaging containers made from them (by GMBH, R.J. Reynolds Tobacco GMBH).
  2. Jimenez, A., Fabra, M. J., Talens P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food Bioprocess Technol., 5, 2058–2076.
  3. Ishigaki, T., Kawagoshi, Y., Ike, M., & Fujita, M. (1999). Biodegradation of a polyvinyl-alcohol-starch blend plastic film. World J. Micr. Biot., 15, 321–327.
  4. Tang, Sh., Peng, Z., Xiong, H., & Tang, H. (2008). Effect of SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr. Polym., 72, 521–526.
  5. Zhou, J., Ma, Y., Ren, L., Tong, Z., Liu, J., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr. Polym., 76, 632–638.
  6. Rahmat, A. R., Rahman, W. A., Sin, L. T., & Yussuf, A. A. (2009). Approaches to improve compatibility of starch filled polymer system: A review. Mat. Sci. Eng. C, 29, 2370–2377.
  7. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradability. Carbohydr. Polym., 85, 1–16.
  8. Abramowska, A., Cieśla, K. A., Buczkowski, M. J., Nowicki, A., & Głuszewski, W. J. (2015). The influence of ionizing radiation on the properties of starch-PVA films. Nukleonika, 60(3), 669–677. DOI:10.1515/nuka-2015-0088.
  9. Priya, B., Gupta, V. K., Pathania, D., & Singha, A. S. (2014). Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym., 109, 171–179.
  10. Cieśla, K., Abramowska, A., Boguski, J., & Drewnik, J. (2017). The effect of PVA type and radiation treatment on the properties of starch-PVA films. Radiat. Phys. Chem., 141, 142–148. DOI:10.1016/jradphyschem.2017.06.015.
  11. Cano, A. I., Cháfer, M., Chiralt, A., & Gonzalez-Martinez, Ch. (2015). Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food. Eng., 167, 59–64.
  12. Aydin, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: starch blends. Carbohydr. Polym., 136, 441–448.
  13. Mathew, Sh., Jayakumar, A., Kumar, V. P., Mathew, J., & Radhakrishnan, E. K. (2019). One-step synthesis of eco-friendly boiled rice starch blended polyvinyl-alcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purpose. Int. J. Biol. Macromol., 139, 475–485.
  14. Tak, H. -Y., Yun, Y. -H., Lee, Ch. -M., & Yoon, S. -D. (2019). Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch. Carbohydr. Polym., 208, 261–268.
  15. Parvin, F., Khan, M., Saadat, A. H. M., Khan, M. A. H., Islam, J. M. M., Ahmed, M., & Gafur, M. A. (2011). Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend films. J. Polym. Environ., 19, 1013–1022.
  16. Senna, M. M., El-Shahat, H. A., & El Naggar, A. W. M. (2011). Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res., 18, 763–771.
  17. Naznin, M., Abedin, M. -Z., Khan, M. -A., & Gafur, M. D. (2012). Influence of Acacia Catechu extracts and urea and gamma irradiation on the mechanical properties of starch/PVA-based material. International Scholarly Research Network (ISRN) Polymer Science, 2012, 348685(8p). DOI:10.5402/2012/348685.
  18. Haji-Saeid, M., Sampa, M. H. O., & Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem., 76, 1535–1541.
  19. Silvestre, C., Pezzuto, M., Duraccio, D., Marra, A., & Cimmino, S. (2014). Exploiting nanotechnology and radiation technologies to develop new eco-sustainable nanomaterials for food packaging suitable for sterilization by irradiation. In Application processed nanomaterials in products from polymers for agricultural applications (pp. 99–104). Vienna: IAEA. (IAEA-TECDOC-1745).
  20. Silvestre, C., Cimmino, S., Stoleru, E., & Vasile, C. (2017). Application of radiation technology to food packaging. In Y. Sun & A. G. Chmielewski (Eds.), Application of ionizing radiation in materials processing (pp. 461–484). Warsaw: Institute of Nuclear Chemistry and Technology.
  21. Farkas, J. (1998). Irradiation as a method for decontaminating food. A review. Int. J. Food Microbiol., 44, 189–204.
  22. Giroux, M., & Lacroix, M. (1998). Nutritional adequacy of irradiated meat – a review. Food Res. Int., 31(4), 257–264.
  23. Farkas, J. (2006). Irradiation for better foods. Trends Food Sci. Technol., 17, 148–152.
  24. World Health Organization. (1995). International Consutative Group on Food Irradiation. Review of data of high dose (10–70 kGy) irradiation of food: report of a consultation, Karlsruhe, 29 August – 2 September 1994. WHO. (WHO/FNU/FOS/95.10).
  25. Al-Kaisey, M. T., Alvan, A. -K. H., Mohammad, M. H., & Saeed, A. H. (2003). Effect of gamma irradiation on anti-nutritional factors in broad bean. Radiat. Phys. Chem., 67, 493–496.
  26. Kim, J. -H., Kim, D. -H., Ahn, H. -J., Park, H. -J., & Byun, M. W. (2005). Reduction of the biogenic amine contents in low salt-fermented soybean paste by gamma irradiation. Food Control, 16, 43–49.
  27. Lee, J. -W., Kim, J. -H., Oh, S. -H., Byun, E. -H., Yook, H. -S., Kim, M. -R., Kim, K. -S., & Byun, M. -W. (2008) Effect of gamma irradiation on viscosity reduction of cereal porridges for improving energy density. Radiat. Phys. Chem., 77, 352–365.
  28. Cieśla, K. A., Nowicki, A., & Buczkowski, M. J. (2010). Radiation modification of the functional properties of the edible films prepared using starch and starch-lipid system. Nukleonika, 55(2), 233–242.
  29. Ibrahim, S. M. (2011). Characterization, mechanical, and thermal properties of gamma irradiated starch films reinforced with mineral clay. J. Appl. Polym. Sci., 119, 685–692.
  30. Ryzhkova, A., Jarzak, U., Schäffer, A., Bämer, M., & Swiderek, P. (2011). Modification of surface properties of thin polysaccharide films by low energy electron exposure. Carbohydr. Polym., 83, 608–615. DOI: 10.1016/j.carbpol.2010.08.029.
  31. Stoica-Guzun, A., Stroescu, M., Jipa, I., Dobre, L., & Zaharescu, T. (2013). Effect of γ irradiation on poly(vinylalcohol) and bacterial cellulose composites used as packaging. Radiat. Phys. Chem., 84, 200–204.
  32. Wang, Sh. -M., Huang, Q. -Z., & Wang, Q. -Sh. (2005). Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohydr. Res., 340(6) 1143–1147.
  33. Głuszewski, W., Boruc, B., Kubera, H., & Abbasowa, D. (2015). The use of DRS and GC to studies the effects of ionizing radiation on paper artifacts. Nukleonika, 60(3), 665–668. DOI:10.1515/nuka-2015-0090.
  34. Zagórski, Z. P., & Rafalski, A. (1998). Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem., 52, 257–260.
  35. Milosavljevic, B. H., & Thomas, J. K. (2001) Effects of the degree of hydrolysis on radiation induced reactions in the poly(vinyl alcohol)–poly(vinyl acetate) system. Radiat. Phys. Chem., 62, 3–10.
  36. von Sontag, C. (2001). Carbohydrates. In: C. D. Jonah & B. S. M. Rao (Eds.), Radiation chemistry. Present status and future trends (pp. 481–511). Amsterdam: Elsevier Sciences BV.
  37. Relleve, L., Nagasawa, N., Luan, L. Q., Yagi, T., Aranilla, C., Abad, L., Kume, T., Yoshii, F., & dela Rosa, A. (2005). Degradation of carrageenan by radiation. Polym. Degrad. Stabil., 87, 403–410. DOI:10.1016/j.polymdegradstab.2004.09.003.
  38. Sharpatyi, V. A. (2003). Radiation chemistry of polysaccharides. 1. Mechanism of carbon monoxide and formic acid formation. High. Energ. Chem., 37(6), 369–372.
  39. Cao, Sh., Zhang, H., Song, Y., Zhang, J., Yang, H., Jiang, L., & Dan, Y. (2015). Investigation of polypyr-role/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications. Appl. Surf. Sci., 342(1), 55–63.
  40. Akhter, S., Allan, K., Buchanan, D., Cook, J. A., Campion, A., & White, J. M. (1988). XPS and IR study of X-ray induced degradation of PVA polymer film. Appl. Surf. Sci., 35(2), 241–258. https://doi.org/10.1016/0169-4332(88)90053-0.
  41. El-Sawy, N. M., El-Arnaouty, M. B., & Abdel, G. (2010). γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polym. Plast. Technol. Eng., 49(2), 169–177.
  42. Zainuddin, , Hill, D. J. T., & Le, T. T. (2001). An ESR study on γ-irradiated poly(vinyl alcohol). Radiat. Phys. Chem., 62, 283–291.
DOI: https://doi.org/10.2478/nuka-2021-0001 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 3 - 9
Submitted on: May 15, 2020
|
Accepted on: Aug 28, 2020
|
Published on: Mar 6, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Krystyna A. Cieśla, Anna Abramowska, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.