Have a personal or library account? Click to login
Seasonal variation of radon and CO2 in the Važecká Cave, Slovakia Cover

Seasonal variation of radon and CO2 in the Važecká Cave, Slovakia

Open Access
|May 2020

References

  1. 1. Lario, J., Sánchez-Moral, S., Cañaveras, J. C., Cuezva, S., & Soler, V. (2005). Radon continuous monitoring in Altamira Cave (northern Spain) to assess user’s annual effective dose. J. Environ. Radioact., 80, 161–174. DOI: 10.1016/j.jenvrad.2004.06.007.10.1016/j.jenvrad.2004.06.007
  2. 2. Thinová, L., & Burian, I. (2008). Effective dose assessment for workers in caves in the Czech Republic: Experiments with passive radon detectors. Radiat. Prot. Dosim., 130(1), 48–51. DOI: 10.1093/rpd/ncn118.10.1093/rpd/ncn118
  3. 3. Alvarez-Gallego, M., Garcia-Anton, E., Fernandez-Cortez, A., Cuezva, S., & Sanchez-Moral, S. (2015). High radon levels in subterranean environments: monitoring and technical criteria to ensure human safety (case of Castañar cave, Spain). J. Environ. Radioact., 145, 19–29. DOI: 10.1016/j. jenvrad.2015.03.024.
  4. 4. Somlai, J., Hakl, J., Kavasi, N., Szeiler, G., Szabo, P., & Kovacs, T. (2011). Annual average radon concentration in the show caves of Hungary. J. Radioanal. Nucl. Chem., 287, 427–433. DOI: 10.1007/s10967-010-0841-9.10.1007/s10967-010-0841-9
  5. 5. Przylibski, T. A. (1999). Radon concentration changes in the air of two caves in Poland. J. Environ. Radioact., 45, 81–94.10.1016/S0265-931X(98)00081-2
  6. 6. Dueñas, C., Fernández, M. C., Cañete, S., Carretero, J., & Liger, E. (1999). 222Rn concentrations, natural flow rate and the radiation exposure levels in the Nerja Cave. Atmos. Environ., 33, 501–510.10.1016/S1352-2310(98)00267-2
  7. 7. Lu, X., Li, L.Y., & Zhang, X. (2009). An environmental risk assessment of radon in Lantian Karst Cave of Shaanxi, China. Water Air Soil Pollut., 198, 307–316. DOI: 10.1007/s11270-008-9847-0.10.1007/s11270-008-9847-0
  8. 8. Bahtijari, M., Vaupotič, J., Gregorič, A., Stegnar, P., & Kobal, I. (2008). Exposure to radon in the Gadime Cave, Kosovo. J. Environ. Radioact., 99, 343–348. DOI: 10.1016/j.jenvrad.2007.08.003.10.1016/j.jenvrad.2007.08.00317904705
  9. 9. Barbosa, S. M., Zafrir, H., Malik, U., & Piatibratova, O. (2010). Multi-year to daily radon variability from continuous monitoring at the Amram tunnel, southern Israel. Geophys. J. Int., 182, 829–842. DOI: 10.1111/j.1365-246X.2010.04660.x.10.1111/j.1365-246X.2010.04660.x
  10. 10. Gregorič, A., Zidanšek, A., & Vaupotič, J. (2011). Dependence of radon levels in Postojna Cave on outside air temperature. Nat. Hazards Earth Syst. Sci., 11, 1523–1528. DOI: 10.5194/nhess-11-1523-2011.10.5194/nhess-11-1523-2011
  11. 11. Gregorič, A., Zidanšek, A., & Vaupotič, J. (2013). Reasons for large fluctuation of radon and CO2 levels in a dead-end passage of a karst cave (Postojna Cave, Slovenia). Nat. Hazards Earth Syst. Sci., 13, 287–297. DOI: 10.5194/nhess-13-287-201310.5194/nhess-13-287-2013
  12. 12. Hakl, J., Csige, I., & Hunyadi, I. (1996). Radon transport in fractured porous media – experimental study in caves. Environ. Int., 22, S433–S437.10.1016/S0160-4120(96)00143-2
  13. 13. Fernandez-Cortes, A., Sanchez-Moral, S., Cuezva, S., Cañaveras, J. C., & Abella, R. (2009). Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain). Int. J. Speleol., 38(2), 153–162.10.5038/1827-806X.38.2.6
  14. 14. Kowalczk, A. J., & Froelich, P. N. (2010). Cave air ventilation and CO2 outgassing by radon-222 modelling: how fast do the caves breathe? Earth Planet. Sci. Lett., 2899, 209–219. DOI: 10.1016/j.epsl.2009.11.010.10.1016/j.epsl.2009.11.010
  15. 15. Milanolo, S., & Gabrovšek, F. (2009). Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina. Bound-Lay. Meteorol., 131, 479–493. DOI: 10.1007/s10546-009-9375-5.10.1007/s10546-009-9375-5
  16. 16. Faimon, J., Štelcl, J., & Sas, D. (2006). Anthropogenic CO2-flux into cave atmosphere and its environmental impact: A case study in the Císařská Cave (Moravian Karst, Czech Republic). Sci. Total Environ., 369, 231–245.10.1016/j.scitotenv.2006.04.00616750843
  17. 17. Droppa, A. (1962a). Speleologický výskum Važeckého krasu (Speleological research of Važec karst area). Geografical Journal, 14(4), 264–293.
  18. 18. Droppa, A. (1962b). Važecká jaskyňa a krasové javy v okolí (Važecká Cave and karst phenomena in surrounding area). Bratislava, Slovakia: Šport.
  19. 19. Bella, P., Littva, J., Pruner, P., Bosák, P., Šlechta, S., Hercman, H., & Čížiková, K. (2016). Geologická stavba, morfológia a vývoj Važeckej jaskyne (Geological setting, morphology and evolution of the Važecká Cave, Slovakia). Acta Carsologica Slovaca, 54(1), 5–31.
  20. 20. Zelinka, J. (2002). Termodynamická charakteristika Važeckej jaskyne (Termodynamic characterization of the Važecká Cave). In Výskum, využívanie a ochrana jaskýň, Zborník referátov z 3. Vedeckej konferencie, (Investiagation, protection and using of caves, conference proceedings), 14–16 November, 2001 (pp. 123–131). SSJ, Žilina, Slovakia: Liptovský Mikuláš Knižné centrum.
DOI: https://doi.org/10.2478/nuka-2020-0025 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 153 - 157
Submitted on: Dec 10, 2019
|
Accepted on: Jan 20, 2020
|
Published on: May 29, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Iveta Smetanová, Karol Holý, Ľubica Luhová, Kristian Csicsay, Dagmar Haviarová, Lucia Kunáková, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.