References
- 1. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
- 2. Podstawczyńska, A., & Pawlak, W. (2016). Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer. Nukleonika, 61(3), 231–237. DOI: 10.1515/nuka-2016-0039.10.1515/nuka-2016-0039
- 3. Gregorič, A., Vaupotič, J., Kardos, R., Horváth, M., Bujtor, T., & Kovács, T. (2013). Radon emanation of soils from different lithological units. Carpath. J. Earth Environ. Sci., 8(2), 185–190.
- 4. Chalupnik, S., & Wysocka, M. (2003). Measurement of radon exhalation from soil – development of the method and preliminary results. J. Mining Sci., 39, 191–198. https://doi.org/10.1023/B:JOMI.0000008467.53630.09.10.1023/B:JOMI.0000008467.53630.09
- 5. Wysocka, M., Kotyrba, A., Chalupnik, S., & Skowronek, J. (2005). Geophysical methods in radon risk studies. J. Environ. Radioact., 82(3), 351–362. DOI: 10.1016/j.jenvrad.2005.02.009.10.1016/j.jenvrad.2005.02.00915885380
- 6. Kovács, T., Shahrokhi, A., Sas, Z., Vigh, T., & Somlai, J. (2017). Radon exhalation study of manganese clay residue and usability in brick production. J. Environ. Radioact., 168, 15–20. https://doi.org/10.1016/j.jenvrad.2016.07.014.10.1016/j.jenvrad.2016.07.01427452913
- 7. Sas, Z., Somlai, J., Szeiler, G., & Kovács, T. (2015). Usability of clay mixed red mud in Hungarian building material production industry. J. Radioanal. Nucl. Chem., 306(1), 271–275. https://doi.org/10.1007/s10967-015-3966-z.10.1007/s10967-015-3966-z
- 8. Wieprzowski, K., Bekas, M., Waśniewska, E., Wardziński, A., & Magiera, A. (2018). Radon 222Rn in drinking water of West Pomeranian Voivodeship and Kuyavian-Pomeranian Voivodeship, Poland. Nukleonika, 63(2), 43–46. DOI: 10.2478/nuka-2018-0005.10.2478/nuka-2018-0005
- 9. Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. J. Environ. Radioact., 173, 18–24. https://doi.org/10.1016/j.jenvrad.2016.09.019.10.1016/j.jenvrad.2016.09.01927745714
- 10. Dixon, D. W. (2001). Radon exposures from the use of natural gas in buildings. Radiat. Prot. Dosim., 97(3), 359–364. DOI: 10.1093/oxfordjournals.rpd.a006671.10.1093/oxfordjournals.rpd.a00667111843341
- 11. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union, OJ L13, 17.1.2014, 1–73. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2014:013:TOC.
- 12. Somogyi, Gy., Nikl, I., Csige, I., & Hunyadi, I. (1989). Radon aktivitáskoncentrációjánakméréseés a belég zésbőleredősugárterhelésmeghatározásahazailakás oklégterében. Izotóptechnika, diagnosztika, 32(4), 177–183.
- 13. Nikl, I. (1996). The radon concentration and absorbed dose rate in Hungarian dwellings. Radiat. Prot. Dosim., 67(3), 225–228. https://doi.org/10.1093/oxfordjournals.rpd.a031821.10.1093/oxfordjournals.rpd.a031821
- 14. International Commission on Radiological Protection. (1993). Protection against radon-222 at home and at work. (ICRP Publication 65). Ann. ICRP, 23(2).
- 15. Hámori, K., Tóth, E., Lénárd, P., Köteles, G., Losonci, A., & Minda, M. (2006). Evaluation of indoor radon measurements in Hungary. J. Environ. Radioact., 88, 189–198. https://doi.org/10.1016/j.jenvrad.2006.02.002.10.1016/j.jenvrad.2006.02.00216581164
- 16. Szeiler, G., Somlai, J., Ishikawa, T., Omori, Y., Mishra, R., Sapra, B. K., Mayya, Y. S., Tokonami, S., Csordás, A., & Kovács, T. (2012). Preliminary results from an indoor radon thoron survey in Hungary. Radiat. Prot. Dosim., 152, 243–246. DOI: 10.1093/rpd/ncs231.10.1093/rpd/ncs23122927648
- 17. Müllerova, M., Kozak, K., Kovács, T., Csordás, A., Grzadziel, D., Holy, K., Mazur, J., Moravcsík, A., Neznal, Matej, Neznal, Martin, & Smetanova, I. (2014). Preliminary results of indoor radon survey in V4 countries. Radiat. Prot. Dosim., 160(1/3), 210–213. https://doi.org/10.1093/rpd/ncu081.10.1093/rpd/ncu08124723197
- 18. Müllerova, M., Kozak, K., Kovács, T., Smetanova, I., Csordás, A., Grzadziel, D., Holy, K., Mazur, J., Moravcsík, A., Neznal, Martin, & Neznal, Matej (2016). Indoor radon survey in Visegrad countries. Appl. Radiat. Isot., 110, 124–128. https://doi.org/10.1016/j.apradiso.2016.01.010.10.1016/j.apradiso.2016.01.01026774389
- 19. Müllerova, M., Mazur, J., Csordás, A., Grzadziel, D., Holy, K., Kovács, T., Kozak, K., Kurekova, P., Nagy, E., Neznal, M., & Smetanova, I. (2017). Preliminary results of radon survey in the kindergartens of V4 countries. Radiat. Prot. Dosim., 177(1/2), 95–98. https://doi.org/10.1093/rpd/ncx155.10.1093/rpd/ncx15529036677
- 20. Csordás, A., Bátor, G., Horváth, D., Somlai, J., & Kovács, T. (2016). Validation of the scanner based radon track detector evaluation system. Radiat. Meas., 87, 1–7. https://doi.org/10.1016/j.radmeas.2016.02.011.10.1016/j.radmeas.2016.02.011
- 21. Nikezic, D., & Yu, K. N. (2004). Formation and growth of tracks in nuclear track materials. Mater. Sci. Eng., 46, 51–123. https://doi.org/10.1016/j.mser.2004.07.003.10.1016/j.mser.2004.07.003
- 22. Matiullah,, Rehman, S., Rehman, S., Mati, N., & Ahmad, S. (2005). Some more new etchants for CR-39 detector. Radiat. Meas., 39, 551–555. DOI: 10.1016/j. radmeas.2004.10.009.
- 23. Ashry, A. H., Abdalla, A. M., Rammah, Y. S., Eisa, M., & Ashraf, O. (2014). The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector. Radiat. Phys. Chem., 101, 41–45. https://doi.org/10.1016/j.radphyschem.2014.03.037.10.1016/j.radphyschem.2014.03.037
- 24. Bátor, G., Csordás, A., Horváth, D., & Kovács, T. (2015). A comparison of a track shape analysis-based automated slide scanner system with traditional methods. J. Radioanal. Nucl. Chem., 306(1), 333–339. https://doi.org/10.1007/s10967-015-4013-9.10.1007/s10967-015-4013-9