Have a personal or library account? Click to login
Configuration of the parameters for scanner-based track detector evaluation system Cover

Configuration of the parameters for scanner-based track detector evaluation system

Open Access
|May 2020

References

  1. 1. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
  2. 2. Podstawczyńska, A., & Pawlak, W. (2016). Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer. Nukleonika, 61(3), 231–237. DOI: 10.1515/nuka-2016-0039.10.1515/nuka-2016-0039
  3. 3. Gregorič, A., Vaupotič, J., Kardos, R., Horváth, M., Bujtor, T., & Kovács, T. (2013). Radon emanation of soils from different lithological units. Carpath. J. Earth Environ. Sci., 8(2), 185–190.
  4. 4. Chalupnik, S., & Wysocka, M. (2003). Measurement of radon exhalation from soil – development of the method and preliminary results. J. Mining Sci., 39, 191–198. https://doi.org/10.1023/B:JOMI.0000008467.53630.09.10.1023/B:JOMI.0000008467.53630.09
  5. 5. Wysocka, M., Kotyrba, A., Chalupnik, S., & Skowronek, J. (2005). Geophysical methods in radon risk studies. J. Environ. Radioact., 82(3), 351–362. DOI: 10.1016/j.jenvrad.2005.02.009.10.1016/j.jenvrad.2005.02.00915885380
  6. 6. Kovács, T., Shahrokhi, A., Sas, Z., Vigh, T., & Somlai, J. (2017). Radon exhalation study of manganese clay residue and usability in brick production. J. Environ. Radioact., 168, 15–20. https://doi.org/10.1016/j.jenvrad.2016.07.014.10.1016/j.jenvrad.2016.07.01427452913
  7. 7. Sas, Z., Somlai, J., Szeiler, G., & Kovács, T. (2015). Usability of clay mixed red mud in Hungarian building material production industry. J. Radioanal. Nucl. Chem., 306(1), 271–275. https://doi.org/10.1007/s10967-015-3966-z.10.1007/s10967-015-3966-z
  8. 8. Wieprzowski, K., Bekas, M., Waśniewska, E., Wardziński, A., & Magiera, A. (2018). Radon 222Rn in drinking water of West Pomeranian Voivodeship and Kuyavian-Pomeranian Voivodeship, Poland. Nukleonika, 63(2), 43–46. DOI: 10.2478/nuka-2018-0005.10.2478/nuka-2018-0005
  9. 9. Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. J. Environ. Radioact., 173, 18–24. https://doi.org/10.1016/j.jenvrad.2016.09.019.10.1016/j.jenvrad.2016.09.01927745714
  10. 10. Dixon, D. W. (2001). Radon exposures from the use of natural gas in buildings. Radiat. Prot. Dosim., 97(3), 359–364. DOI: 10.1093/oxfordjournals.rpd.a006671.10.1093/oxfordjournals.rpd.a00667111843341
  11. 11. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union, OJ L13, 17.1.2014, 1–73. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2014:013:TOC.
  12. 12. Somogyi, Gy., Nikl, I., Csige, I., & Hunyadi, I. (1989). Radon aktivitáskoncentrációjánakméréseés a belég zésbőleredősugárterhelésmeghatározásahazailakás oklégterében. Izotóptechnika, diagnosztika, 32(4), 177–183.
  13. 13. Nikl, I. (1996). The radon concentration and absorbed dose rate in Hungarian dwellings. Radiat. Prot. Dosim., 67(3), 225–228. https://doi.org/10.1093/oxfordjournals.rpd.a031821.10.1093/oxfordjournals.rpd.a031821
  14. 14. International Commission on Radiological Protection. (1993). Protection against radon-222 at home and at work. (ICRP Publication 65). Ann. ICRP, 23(2).
  15. 15. Hámori, K., Tóth, E., Lénárd, P., Köteles, G., Losonci, A., & Minda, M. (2006). Evaluation of indoor radon measurements in Hungary. J. Environ. Radioact., 88, 189–198. https://doi.org/10.1016/j.jenvrad.2006.02.002.10.1016/j.jenvrad.2006.02.00216581164
  16. 16. Szeiler, G., Somlai, J., Ishikawa, T., Omori, Y., Mishra, R., Sapra, B. K., Mayya, Y. S., Tokonami, S., Csordás, A., & Kovács, T. (2012). Preliminary results from an indoor radon thoron survey in Hungary. Radiat. Prot. Dosim., 152, 243–246. DOI: 10.1093/rpd/ncs231.10.1093/rpd/ncs23122927648
  17. 17. Müllerova, M., Kozak, K., Kovács, T., Csordás, A., Grzadziel, D., Holy, K., Mazur, J., Moravcsík, A., Neznal, Matej, Neznal, Martin, & Smetanova, I. (2014). Preliminary results of indoor radon survey in V4 countries. Radiat. Prot. Dosim., 160(1/3), 210–213. https://doi.org/10.1093/rpd/ncu081.10.1093/rpd/ncu08124723197
  18. 18. Müllerova, M., Kozak, K., Kovács, T., Smetanova, I., Csordás, A., Grzadziel, D., Holy, K., Mazur, J., Moravcsík, A., Neznal, Martin, & Neznal, Matej (2016). Indoor radon survey in Visegrad countries. Appl. Radiat. Isot., 110, 124–128. https://doi.org/10.1016/j.apradiso.2016.01.010.10.1016/j.apradiso.2016.01.01026774389
  19. 19. Müllerova, M., Mazur, J., Csordás, A., Grzadziel, D., Holy, K., Kovács, T., Kozak, K., Kurekova, P., Nagy, E., Neznal, M., & Smetanova, I. (2017). Preliminary results of radon survey in the kindergartens of V4 countries. Radiat. Prot. Dosim., 177(1/2), 95–98. https://doi.org/10.1093/rpd/ncx155.10.1093/rpd/ncx15529036677
  20. 20. Csordás, A., Bátor, G., Horváth, D., Somlai, J., & Kovács, T. (2016). Validation of the scanner based radon track detector evaluation system. Radiat. Meas., 87, 1–7. https://doi.org/10.1016/j.radmeas.2016.02.011.10.1016/j.radmeas.2016.02.011
  21. 21. Nikezic, D., & Yu, K. N. (2004). Formation and growth of tracks in nuclear track materials. Mater. Sci. Eng., 46, 51–123. https://doi.org/10.1016/j.mser.2004.07.003.10.1016/j.mser.2004.07.003
  22. 22. Matiullah,, Rehman, S., Rehman, S., Mati, N., & Ahmad, S. (2005). Some more new etchants for CR-39 detector. Radiat. Meas., 39, 551–555. DOI: 10.1016/j. radmeas.2004.10.009.
  23. 23. Ashry, A. H., Abdalla, A. M., Rammah, Y. S., Eisa, M., & Ashraf, O. (2014). The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector. Radiat. Phys. Chem., 101, 41–45. https://doi.org/10.1016/j.radphyschem.2014.03.037.10.1016/j.radphyschem.2014.03.037
  24. 24. Bátor, G., Csordás, A., Horváth, D., & Kovács, T. (2015). A comparison of a track shape analysis-based automated slide scanner system with traditional methods. J. Radioanal. Nucl. Chem., 306(1), 333–339. https://doi.org/10.1007/s10967-015-4013-9.10.1007/s10967-015-4013-9
DOI: https://doi.org/10.2478/nuka-2020-0021 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 133 - 137
Submitted on: Dec 2, 2019
Accepted on: Feb 6, 2020
Published on: May 29, 2020
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Anita Csordás, Edit Tóth-Bodrogi, Tibor Kovács, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.