References
- 1. Miyamoto, Y., Oda, T., Adachi, T., Noguchi, H., Nishimura, H., & Usuda, S. (2001). Technical preparations for atmospheric radioactivity monitoring. Nukleonika, 46(4), 123–126.
- 2. Green, N. (2001). The NRPB environmental radioactivity surveillance programme. Nukleonika, 46(4), 127–129.
- 3. La Verde, G., Roca, V., Sabbarese, C., Ambrosino, F., & Pugliese, M. (2018). Correlation of the activity concentration of gas radon in environments located on ground floor and underground level. Nuovo Cimento C, 41(6), 219. https://doi.org/10.1393/ncc/i2018-18219-0.
- 4. Sabbarese, C., Ambrosino, F., Buompane, R., Pugliese, M., & Roca, V. (2017). Analysis of alpha particles spectra of the Radon and Thoron progenies generated by an electrostatic collection detector using new software. Appl. Radiat. Isot., 122, 180–185. https://doi.org/10.1016/j.apradiso.2017.01.042.10.1016/j.apradiso.2017.01.042
- 5. Ambrosino, F., Buompane, R., Pugliese, M., Roca, V., & Sabbarese, C. (2018). RaMon A system for radon and thoron measurement. Nuovo Cimento C, 41(6), 222. https://doi.org/10.1393/ncc/i2018-18222-5.
- 6. La Verde, G., Roca, V., Sabbarese, C., Ambrosino, F., & Pugliese, M. (2018). The equilibrium factor in the radon dose calculation in the archaeological site of Acquedotto Augusteo del Serino in Naples. Nuovo Cimento C, 41(6), 218. https://doi.org/10.1393/ncc/i2018-18218-1.
- 7. Stobiński, M., Jędrzejek, F., & Kubica, B. (2018). Preliminary studies on the spatial distribution of artificial 137Cs and natural gamma radionuclides in the region of the Ojców National Park, Poland. Nukleonika, 63(4), 105–111. DOI: 10.2478/nuka-2018-0013.10.2478/nuka-2018-0013
- 8. Gan, N., Cen, K., Ye, R., & Li, T. (2018). Rapid estimation of environmental radioactivity surrounding Xiangshan uranium deposits, Jiangxi province, Eastern China. Nukleonika, 63(4), 113–121. DOI: 10.2478/nuka-2018-0014.10.2478/nuka-2018-0014
- 9. Horng, M. C., & Jiang, S. H. (2004). In situ measurements of gamma-ray intensity from radon progeny in rainwater. Radiat. Meas., 38, 23–30. https://doi.org/10.1016/S1350-4487(03)00285-3.10.1016/S1350-4487(03)00285-3
- 10. Baker, S. I. (1999). Detection of radon decay products in rainwater. Health Phys., 77(5), S71–S76. DOI: 10.1097/00004032-199911001-00005.10.1097/00004032-199911001-0000510527152
- 11. Moriizumi, J., Kondo, D., Kojima, Y., Liu, H., Hirao, S., & Yamazawa, H. (2015). 214Bi/214Pb radioactivity ratio in rainwater for residence time estimation of cloud droplets and raindrops. Radiat. Prot. Dosim., 167(1/3), 55–58. https://doi.org/10.1093/rpd/ncv220.10.1093/rpd/ncv22025911410
- 12. Voltaggio, M. (2012). Radon progeny in hydrometeors at the Earth’s surface. Radiat. Prot. Dosim., 150(3), 334–341. https://doi.org/10.1093/rpd/ncr402.10.1093/rpd/ncr40222039270
- 13. Foote, S. R., & Frick, N. E. (2001). Time variations of natural gamma radiation. Environ. Geosci., 8(2), 130–139. DOI: 10.1111/j.1526-0984.2001.82005.pp.x.
- 14. Sabbarese, C., Ambrosino, F., De Cicco, F., Pugliese, M., Quarto, M., & Roca, V. (2017). Signal decomposition and analysis for the identification of periodic and anomalous phenomena in Radon time-series. Radiat. Prot. Dosim., 177(1/2), 202–206. https://doi.org/10.1093/rpd/ncx159.10.1093/rpd/ncx15929036347
- 15. Duan, W. Y., Han, Y., Huang, L. M., Zhao, B. B., & Wang, M. H. (2016). A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng., 124, 54–73. https://doi.org/10.1016/j.oceaneng.2016.05.049.10.1016/j.oceaneng.2016.05.049
- 16. Ambrosino, F., De Cesare, W., Roca, V., & Sabbarese, C. (2019). Mathematical and geophysical methods for searching anomalies of the Radon signal related to earthquakes. J. Phys-Conf. Series, 1226(1), 012025. https://doi.org/10.1088/1742-6596/1226/1/012025.10.1088/1742-6596/1226/1/012025
- 17. Ambrosino, F., Pugliese, M., Roca, V., & Sabbarese, C. (2018). Innovative methodologies for the analysis of radon time series. Nuovo Cimento C, 41(6), 223. https://doi.org/10.1393/ncc/i2018-18223-4.
- 18. Ambrosino, F., Thinová, L., Briestenský, M., & Sabbarese, C. (2019). Analysis of radon time series recorded in Slovak and Czech caves for the detection of anomalies due to seismic phenomena. Radiat. Prot. Dosim., 186(2/3), 428–432. https://doi.org/10.1093/rpd/ncz245.10.1093/rpd/ncz24531832681
- 19. Ambrosino, F., Thinová, L., Briestenský, M., & Sabbarese, C. (2019). Anomalies identification of Earth’s rotation rate time series (2012-2017) for possible correlation with strong earthquakes occurrence. Geod. Geodyn., 10(6), 455–459. https://doi.org/10.1016/j.geog.2019.06.002.10.1016/j.geog.2019.06.002
- 20. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
- 21. Ripley, B. D. (1977). Modelling spatial patterns. J. R. Stat. Ser. Soc. B-Stat. Methodol., 39(2), 172–192.10.1111/j.2517-6161.1977.tb01615.x
- 22. Ambrosino, F. (2020). Study on a peak shape fitting model for the analysis of alpha-particle spectra. Appl. Radiat. Isot., 159, 109090. https://doi.org/10.1016/j.apradiso.2020.109090.10.1016/j.apradiso.2020.10909032250764
- 23. Ambrosino, F., Thinová, L., Briestenský, M., Giudicepietro, F., Roca, V., & Sabbarese, C. (2020). Analysis of geophysical and meteorological parameters influencing 222Rn activity concentration in Mladeč caves (Czech Republic) and in soils of Phlegrean Fields caldera (Italy). Appl. Radiat. Isot., 160, 109140. https://doi.org/10.1016/j.apradiso.2020.109140.10.1016/j.apradiso.2020.10914032351231