Have a personal or library account? Click to login
A new geostatistical tool for the analysis of the geographical variability of the indoor radon activity Cover

A new geostatistical tool for the analysis of the geographical variability of the indoor radon activity

Open Access
|May 2020

References

  1. 1. International Agency for Research on Cancer. (1988). Manmade mineral fibres and radon. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 43). Lyon, France: IARC.
  2. 2. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
  3. 3. Kavasi, N., Somlai, J., Szeiler, G., Szabo, B., Schafer, I., & Kovacs, T. (2010). Estimation of effective doses to cavers based on radon measurements carried out in seven caves of the Bakony Mountains in Hungary. Radiat. Meas., 45, 1068–1071. https://doi.org/10.1016/j.radmeas.2010.07.017.10.1016/j.radmeas.2010.07.017
  4. 4. Quarto, M., Pugliese, M., Loffredo, F., Zambella, C., & Roca, V. (2014). Radon measurements and effective dose from radon inhalation estimation in the neapolitan catacombs. Radiat. Prot. Dosim., 158, 442–446. https://doi.org/10.1093/rpd/nct255.10.1093/rpd/nct255
  5. 5. Kendall, G. M. (2004). Controls on radioactivity in water supplies in England and Wales, with especial reference to radon. J. Radiol. Prot., 24, 409–412. DOI: 10.1088/0952-4746/24/4/005.10.1088/0952-4746/24/4/005
  6. 6. Demoury, C., Ielsch, G., Hemon, D., Laurent, O., Laurier, D., Clavel, J., & Guillevic, J. (2013). A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. J. Environ. Radioact., 126, 216–225. https://doi.org/10.1016/j.jenvrad.2013.08.006.10.1016/j.jenvrad.2013.08.006
  7. 7. Quarto, M., Pugliese, M., Loffredo, F., & Roca, V. (2016). Indoor radon concentration and gamma dose rate in dwellings of the Province of Naples, South Italy, and estimation of the effective dose to the inhabitants. Radioprotection, 51(1), 31–36. DOI: 10.1051/radiopro/2015021.10.1051/radiopro/2015021
  8. 8. Bossew, P., Zunić, Z. S., Stojanovska, Z., Tollefsen, T., Carpentieri, C., Veselinovic, N., Komatina, S., Vaupotic, J., Simovic, R. D., Antignani, S., & Bochicchio, F. (2014). Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia – application of geostatistical methods. J. Environ. Radioact., 127, 141–148. https://doi.org/10.1016/j.jenvrad.2013.09.015.10.1016/j.jenvrad.2013.09.015
  9. 9. Menzler, S., Piller, G., Gruson, M., Rosario, A. S., Wichmann, H. E., & Kreienbrock, L. (2008). Population attributable fraction for lung cancer due to residential radon in Switzerland and Germany. Health Phys., 95(2), 179–189. DOI: 10.1097/01. HP.0000309769.55126.03.10.1097/01
  10. 10. McBratney, A. B., Webster, R., & Burgess, T. M. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables-I: Theory and method. Comput. Geosci., 7(4), 331–334. https://doi.org/10.1016/0098-3004(81)90077-7.10.1016/0098-3004(81)90077-7
  11. 11. Zhu, H. C., Charlet, J. M., & Poffijn, A. (2001). Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques. Sci. Total Environ., 272(1/3), 203–210. https://doi.org/10.1016/S0048-9697(01)00693-3.10.1016/S0048-9697(01)00693-3
  12. 12. Vitale, S., & Ciarcia, S. (2013). Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria–Peloritani Terrane system (Italy). Tectono-physics, 583, 164–182. https://doi.org/10.1016/j.tecto.2012.11.004.10.1016/j.tecto.2012.11.004
  13. 13. Pandey, M. D., & Nathwani, J. S. (1996). Measurement of socio-economic inequality using the life-quality index. Soc. Indic. Res., 39, 187–202.10.1007/BF00286973
  14. 14. Chiles, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. New York: Wiley.10.1002/9780470316993
  15. 15. Lark, R. M. (2000). Estimating variograms of soil properties by the method-of-moments and maximum likelihood. Eur. J. Soil Sci., 51(4), 717–728. https://doi.org/10.1046/j.1365-2389.2000.00345.x.10.1046/j.1365-2389.2000.00345.x
  16. 16. Borgoni, R., Quatto, P., Somà, G., & de Bartolo, D. (2010). A geostatistical approach to define guidelines for radon prone area identification. Stat. Methods Appl., 19, 255–276. DOI: 10.1007/s10260-009-0128-x.10.1007/s10260-009-0128-x
  17. 17. Gini, C. (1912). Memorie di metodologia statistica. Vol. 1. Variabilita concentrazione. Rome: Libreria Eredi Virgilio Veschi.
DOI: https://doi.org/10.2478/nuka-2020-0015 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 99 - 104
Submitted on: Dec 2, 2019
Accepted on: Jan 16, 2020
Published on: May 29, 2020
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Filomena Loffredo, Antonio Scala, Guido Maria Adinolfi, Federica Savino, Maria Quarto, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.