Have a personal or library account? Click to login
Remarks to history of radon activity concentration metrology Cover

Remarks to history of radon activity concentration metrology

By: Petr P. S. Otahal and  Ivo Burian  
Open Access
|Mar 2020

References

  1. 1. Röttger, A., Honig, A., & Linzmaier, D. (2014). Calibration of commercial radon and thoron monitors at stable activity concentrations. Appl. Radiat. Isot., 87, 44–47.10.1016/j.apradiso.2013.11.111
  2. 2. Poncela, L. S. Q., Fernández, C. S., Gutiérrez-Villanueva, J. -L. G., Fuente Merino, I., Celaya González, S., Quindós López, L., Quindós López, J., Fernández Lopez, E., & Fernández Villar, A. (2016). The Laboratory of Natural Radiation (LRN) – a place to test radon instruments under variable conditions of radon concentration and climatic variables. Nukleonika, 61(3), 275–280. DOI: 10.1515/nuka-2016-0046.10.1515/nuka-2016-0046
  3. 3. Hoover, H. C. & Hoover, L. H. (translators). (1950). Gregorius Agricola De re metallica: translated from the 1st Latin edition of 1556, with biographic introduction, annotation and appendices upon the development of mining methods, metallurgical processes, geology, mineralogy and mining law, from the earliest times to the 16th century. New York: Dover Publications.
  4. 4. Rutherford, E., & Brooks, H. T. (1901). The new gas from radium. Trans. Roy. Soc. Canada, 7, 21–25.
  5. 5. Cothern, C. R. (1987). History and uses. In C. R. Cothern & J. E. Smith Jr. (Eds.), Environmental radon (pp. 31–58). Switzerland: Springer.
  6. 6. ICRU. (2012). Measurement and reporting of radon exposures. (ICRU Report No. 88). Journal of the ICRU, 12(2), 71. doi: 10.1093/jicru/ndv019.10.1093/jicru/ndv019
  7. 7. Solomon, S. B., Knutson, E. O., Holub, R. F., Strong, J. C., & Keng, W. T. (1986). International intercalibration and intercomparison of radon, thoron and daughters measuring equipment. Nuclear Energy Agency OECD (NEA). (INIS-XN-172).
  8. 8. Peggie, J. R., Gan, T. -H., & Solomon, S. B. (1993). Asian/Australasian Region Intercalibration and Intercomparison Programme for Radon, Thoron and Daughters.
  9. 9. Röttger, A., Honig, A., Schmidt, V., Buchröder, H., Rox, A., Butterweck, G., Schuler, Ch., Maringer, F. J., Jachs, P., Edelmaier, R., Michielsen, N., Howarth, C. B., Miles, J. C. H., Vargas, A., Ortega, X., Burian, I., Turtiainen, T., & Hagberg, N. (2006). Radon activity concentration – a Euromet and BIPM supplementary comparison. Appl. Radiat. Isot., 64(10/11), 1102–1107.10.1016/j.apradiso.2006.02.086
  10. 10. Picolo, J. L. (1996). Absolute measurement of radon 222 activity. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 369, 452–457.10.1016/S0168-9002(96)80029-5
  11. 11. Liang, J., Yang, Z., Wang, L., Li, Z., Zhang, M., Liu, H., & Yuan, D. (2018). Development of the absolute standardization apparatus for radon-222 activity. Appl. Radiat. Isot., 134, 358–362.10.1016/j.apradiso.2017.07.05528827092
  12. 12. Dersch, R. (2004). Primary and secondary measurements of 222Rn. Appl. Radiat. Isot., 60, 387–390.10.1016/j.apradiso.2003.11.04614987672
  13. 13. Spring, P., Nedjadi, Y., Bailat, C., Triscome, G., & Bochud, F. (2006). Absolute activity measurement of radon gas at IRA-METAS. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 568(2), 752–759.10.1016/j.nima.2006.07.055
  14. 14. Kim, B. C., Lee, K. B., Park, T. S., Lee, J. M., Lee, S. H., Oh, P. J., Lee, M. K., & Ahn, J. K. (2012). Development of the primary measurement standard for gaseous radon-222 activity. Appl. Radiat. Isot., 70, 1934–1939.10.1016/j.apradiso.2012.02.02022607994
  15. 15. Sabot, B., Pierre, S., & Cassette, P. (2016). An absolute radon 222 activity measurement system at LNELNHB. Appl. Radiat. Isot., 118, 167–174.10.1016/j.apradiso.2016.09.00927642726
  16. 16. Cliff, K. D., Holub, R. F., Knutson, E. O., Lettner, H., & Solomon, S. B. (1994). International intercomparison of measurements of radon and radon decay products, Badgastein, Austria, September, 29–30, 1991. Chilton, Didcot, Oxon: National Radiological Protection Board.
  17. 17. Droullard, R. F., Davis, T. H., Smith, E. E., & Holub, R. F. (1984). Radiation hazards test facilities at the Denver Research Center. Denver, CO: US Bureau of Mines.
  18. 18. Azimi-Garakani, D. (1992). A comparison of different radon chambers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 71(1), 99–102.10.1016/0168-583X(92)95347-T
  19. 19. Burian, I., Otahal, P., Vosahlik, J., & Pilecka, E. (2011). Czech primary radon measurement equipment. Radiat. Prot. Dosim., 145(2/3), 333–337.10.1093/rpd/ncr04121482617
  20. 20. Ichitsubo, H., Yamada, Y., Shimo, M., & Koizumi, A. (2004). Development of a radon-aerosol chamber at NIRS – general design and aerosol performance. J. Aerosol Sci., 35, 217–232.10.1016/j.jaerosci.2003.08.002
  21. 21. Skubacz, K., Chalupnik, S., Urban, P., & Wysocka, M. (2017). Radon chamber in the Central Mining Institute – The calibration facility for radon and radon progeny monitors. Radiat. Prot. Dosim., 177(1/2), 164–167.10.1093/rpd/ncx17729036377
DOI: https://doi.org/10.2478/nuka-2020-0006 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 45 - 49
Submitted on: May 15, 2019
|
Accepted on: Jan 13, 2020
|
Published on: Mar 20, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Petr P. S. Otahal, Ivo Burian, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.