Have a personal or library account? Click to login
Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation: a review Cover

Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation: a review

Open Access
|Mar 2020

References

  1. 1. Wong, J. Y. C., Filippi, A. R., Dabaja, B. S., Yahalom, J., & Specht, L. (2018). Total Body Irradiation: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. Biol. Phys., 101, 521–529. DOI: 10.1016/j. ijrobp.2018.04.071.10.1016/j.ijrobp.2018.04.071
  2. 2. Paix, A., Antoni, D., Waissi, W., Ledoux, M. P., Bilger, K., Fornecker, L., & Noel, G. (2018). Total body irradiation in allogeneic bone marrow transplantation conditioning regimens: A review. Crit. Rev. Oncol. Hematol., 123, 138–148. DOI: 10.1016/j.critrevonc.2018.01.011.10.1016/j.critrevonc.2018.01.011
  3. 3. Lin, H. S., & Drzymala, R. E. (2003). Total body irradiation. In C. A. Perez & L. W. Brady (Eds.), Principles and practice of radiation oncology (pp. 333–342). Philadeplphia: Lippincott-Raven.
  4. 4. Wolden, S. L., Rabinovitch, R. A., Bittner, N. H. J., Galvin, J. M., Giap, H. B., Schomberg, P. J., & Rosenthal, S. A. (2013). American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice guideline for the performance of total body irradiation (TBI). J. Clin. Oncol., 36, 97–101. DOI: 10.1097/COC.0b013e31826e0528.10.1097/COC.0b013e31826e0528
  5. 5. Bieri, S., Helg, C., Chapuis, B., & Miralbell, R. (2001). Total body irradiation before allogeneic bone marrow transplantation: is more dose better? Int. J. Radiat. Oncol. Biol. Phys., 49, 1071–1077.10.1016/S0360-3016(00)01491-7
  6. 6. Hartman, A. R., Williams, S. F., & Dillon, J. J. (1998). Survival, disease-free survival and adverse effects of conditioning for allogeneic bone marrow transplantation with busulfan/cyclophosphamide vs total body irradiation: a meta-analysis. Bone Marrow Transplant., 22, 439–443. DOI: 10.1038/sj.bmt.1701334.10.1038/sj.bmt.1701334
  7. 7. Blaise, D., Maraninchi, D., Michallet, M., Reiffers, J., Jouet, J. P., Milpied, N., Devergie, A., Attal, M., Sotto, J. J., Kuentz, M., Ifrah, N., Dauriac, C., Bordigoni, P., Gratecos, N., Guilhot, F., Guyotat, D., Gluckman, E., & Vernant, J. P. (2001). Long-term follow-up of a randomized trial comparing the combination of cyclophosphamide with total body irradiation or busulfan as conditioning regimen for patients receiving HLA-identical marrow grafts for acute myeloblastic leukemia in first complete remission. Blood, 97, 3669–3671.10.1182/blood.V97.11.3669
  8. 8. Dusenbery, K. E., Daniels, K. A., McClure, J. S., Mc-Glave, P. B., Ramsay, N. K., Blazar, B. R., Neglia, J. P., Kersey, J. H., & Woods, W. G. (1995). Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia. Int. J. Radiat. Oncol. Biol. Phys., 31, 119–128.10.1016/0360-3016(94)00335-I
  9. 9. Michel, G., Gluckman, E., Esperou-Bourdeau, H., Reiffers, J., Pico, J. L., Bordigoni, P., Thuret, I., Blaise, D., Bernaudin, F., & Jouet, J. P. (1994). Allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: impact of conditioning regimen without total-body irradiation–a report from the Societe Francaise de Greffe de Moelle. J. Clin. Oncol., 12, 1217–1222. DOI: 10.1200/JCO.1994.12.6.1217.10.1200/JCO.1994.12.6.12178201385
  10. 10. Bunin, N., Aplenc, R., Kamani, N., Shaw, K., Cnaan, A., & Simms, S. (2003). Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant., 32, 543–548. DOI: 10.1038/sj.bmt.1704198.10.1038/sj.bmt.170419812953124
  11. 11. Clift, R. A., Buckner, C. D., Appelbaum, F. R., Sullivan, K. M., Storb, R., & Thomas, E. D. (1998). Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood, 92, 1455–1456.10.1182/blood.V92.4.1455
  12. 12. Ringden, O., Ruutu, T., Remberger, M., Nikoskelainen, J., Volin, L., Vindelov, L., Parkkali, T., Lenhoff, S., Sallerfors, B., & Ljungman, P. (1994). A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: a report from the Nordic Bone Marrow Transplantation Group. Blood, 83, 2723–2730.10.1182/blood.V83.9.2723.2723
  13. 13. Bolling, T., Kreuziger, D. C., Ernst, I., Elsayed, H., & Willich, N. (2011). Retrospective, monocentric analysis of late effects after total body irradiation (TBI) in adults. Strahlenther. Onkol., 187, 311–315. DOI: 10.1007/s00066-011-2190-1.10.1007/s00066-011-2190-1
  14. 14. Blaise, D., Maraninchi, D., Archimbaud, E., Reiffers, J., Devergie, A., Jouet, J. P., Milpied, N., Attal, M., Michallet, M., & Ifrah, N. (1992). Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: a randomized trial of a busulfancytoxan versus cytoxan-total body irradiation as preparative regimen: a report from the Group d’Etudes de la Greffe de Moelle Osseuse. Blood, 79, 2578–2582.10.1182/blood.V79.10.2578.bloodjournal79102578
  15. 15. Leiper, A. D. (1995). Late effects of total body irradiation. Arch. Dis. Child, 72, 382–385. DOI: 10.1136/adc.72.5.382.10.1136/adc.72.5.382
  16. 16. Shank, B. (1996). The balancing act: pneumonitis vs. relapse in cytoreductive regimens containing total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 36, 261–262.10.1016/S0360-3016(96)00307-0
  17. 17. Ringden, O., Remberger, M., Ruutu, T., Nikoskelainen, J., Volin, L., Vindelov, L., Parkkali, T., Lenhoff, S., Sallerfors, B., Mellander, L., Ljungman, P., & Jacobsen, N. (1999). Increased risk of chronic graft-versus-host disease, obstructive bronchiolitis, and alopecia with busulfan versus total body irradiation: long-term results of a randomized trial in allogeneic marrow recipients with leukemia. Nordic Bone Marrow Transplantation Group. Blood, 93, 2196–2201.10.1182/blood.V93.7.2196
  18. 18. Socie, G., Clift, R. A., Blaise, D., Devergie, A., Ringden, O., Martin, P. J., Remberger, M., Deeg, H. J., Ruutu, T., Michallet, M., Sullivan, K. M., & Chevret, S. (2001). Busulfan plus cyclophosphamide compared with total-body irradiation plus cyclophosphamide before marrow transplantation for myeloid leukemia: long-term follow-up of 4 randomized studies. Blood, 98, 3569–3574.10.1182/blood.V98.13.356911739158
  19. 19. Della Volpe, A., Ferreri, A. J. M., Annaloro, C., Mangili, P., Rosso, A., Calandrino, R., Villa, E., Lambertenghi-Deliliers, G., & Fiorino, C. (2002) Lethal pulmonary complications significantly correlate with individually assessed mean lung dose in patients with hematologic malignancies treated with total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 52, 483–488.10.1016/S0360-3016(01)02589-5
  20. 20. Hasegawa, W., Pond, G. R., Rifkind, J. T., Messner, H. A., Lau, A., Daly, A. S., Kiss, T. L., Kotchetkova, N., Galal, A., & Lipton, J. H. (2005). Long-term follow-up of secondary malignancies in adults after allogeneic bone marrow transplantation. Bone Marrow Transplant., 35, 51–55. DOI: 10.1038/sj.bmt.1704706.10.1038/sj.bmt.170470615516939
  21. 21. Curtis, R. E., Rowlings, P. A., Deeg, H. J., Shriner, D. A., Socie, G., Travis, L. B., Horowitz, M. M., Witherspoon, R. P., Hoover, R. N., Sobocinski, K. A., Fraumeni, J. F. Jr., & Boice, J. D. Jr. (1997). Solid cancers after bone marrow transplantation. N. Engl. J. Med., 336, 897–904. DOI: 10.1056/NEJM199703273361301.10.1056/NEJM1997032733613019070469
  22. 22. Heublein, A. C. (1932). Preliminary report on continuous irradiation of the entire body. Radiology, 18, 1051–1062.10.1148/18.6.1051
  23. 23. Ferrebee, J. W., & Thomas, E. D. (1958). Factors affecting the survival of transplanted tissues. Am. J. Med. Sci., 235, 369–386.10.1097/00000441-195804000-00001
  24. 24. van Dyk, J., Galvin, J. M., Glasgrow, G. P., & Podgorsak, E. B. (1986). The physical aspects of total and half body photon irradiation. New York: American Institute of Physics, Inc. (AAPM Report 17, Task Group 29).10.37206/16
  25. 25. Webster, E. W. (1960). Physical considerations in the design of facilities for the uniform whole-body irradiation of man. Radiology, 75, 19–32.10.1148/75.1.19
  26. 26. Jacobs, M. L., & Pape, L. (1960). A total body irradiation chamber and its uses. Int. J. Appl. Radiat. Isot., 9, 141–143.10.1016/0020-708X(60)90111-3
  27. 27. Brucer, M. (1961). A total body irradiator. Int. J. Appl. Radiat. Isot., 10, 99–105.10.1016/0020-708X(61)90105-3
  28. 28. Draeger, R. H., Lee, R. H., Shea, T. E., Whitten, F. I., & Eicher, M. (1953). Research Report 11. Bethesda, MD: Naval Medical Research Institute. (1219).
  29. 29. Sahler, O. D. (1959). Development of a room specifically designed for total body irradiation. Radiology, 72, 266–267.10.1148/72.2.266
  30. 30. Surmont, J., Dutreix, A., & Lalanne, C. M. (1960). Les irradiations in toto pour greffes de tissu ou transplantation d’organe chez l’homme. Problems techniques. J. Radiol. Electrol., 41, 679–689.
  31. 31. Thomas, E. D., Storb, R., & Buckner, C. D. (1976). Total body irradiation in preparation for marrow engraftment. Transplant. Proc., 4, 591–593.
  32. 32. Lam, W. C., Order, S. E., & Thomas, E. D. (1980). Uniformity and standardization of single and opposing cobalt-60 sources for total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 6, 245–250.10.1016/0360-3016(80)90045-0
  33. 33. Leung, P. M. K., Rider, W. D., Webb, H. P., Aget, H., & Johns, H. E. (1981). Cobalt-60 therapy unit for large field irradiation. Int. J. Radiat. Oncol. Biol. Phys., 7, 705–712.10.1016/0360-3016(81)90461-2
  34. 34. Cunningham, J. R., & Wright, D. J. (1962). A simple facility for whole-body irradiation. Radiology, 78, 941–949.10.1148/78.6.941
  35. 35. Quast, U. (1985). Physical treatment planning of total body irradiation – Patient translation and beam zone method. Med. Phys., 12, 567–573.10.1118/1.595677
  36. 36. Mulvey, P. J., & Godlee, J. N. (1982). Technique and dosimetry for TBI at University College Hospital, London. J. Eur. Radiother., 3, 241–242.
  37. 37. Peters, V. G., & Herer, A. S. (1984). Modification of a standard cobalt-60 unit for total body irradiation at 150 cm SSD. Int. J. Radiat. Oncol. Biol. Phys., 10, 927–932.10.1016/0360-3016(84)90397-3
  38. 38. Chretien, M., Côté, C., Blais, R., Brouard, L., Roy-Lacroix, L., Larochelle, M., Roy, R., & Pouliot, J. (2000). A variable speed translating couch technique for total body irradiation. Med. Phys., 27, 1127–1130. DOI: 10.1118/1.598978.10.1118/1.598978
  39. 39. Pla, M., Chenery, S. G., & Podgorsak, E. B. (1983). Total body irradiation with a sweeping beam. Int. J. Radiat. Oncol. Biol. Phys., 9, 83–89.10.1016/0360-3016(83)90214-6
  40. 40. Kim, T. H., Khan, F. M., & Galvin, J. M. (1980). Total body irradiation conference: A report of the work party: Comparison of total body irradiation techniques for bone marrow transplantation. Int. J. Radiat. Oncol. Biol. Phys., 6, 779–784.10.1016/0360-3016(80)90240-0
  41. 41. Malicki, J., Wachowiak, J., Kosicka, G., Stryczyńska, G., Nowak, A., & Pracz, J. (2001). Total body irradiation before bone marrow transplantation: aims and results. Adv. Exp. Med. Biol., 495, 277–282.10.1007/978-1-4615-0685-0_38
  42. 42. Girinsky, T., Socie, G., Ammarguellat, H., Cosset, J. M., Briot, E., Bridier, A., & Gluckman, E. (1994). Consequences of two different doses to the lungs during a single dose of total body irradiation: results of a randomized study on 85 patients. Int. J. Radiat. Oncol. Biol. Phys., 30, 821–824.10.1016/0360-3016(94)90355-7
  43. 43. Malicki, J. (1998). Doses in critical organs during total body irradiation before bone marrow transplantation. Ann. Transplant., 3, 14–19.
  44. 44. Barrett, A., Depledge, M. H., & Powles, R. L. (1983). Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation. Int. J. Radiat. Oncol. Biol. Phys., 9, 1029–1033.10.1016/0360-3016(83)90393-0
  45. 45. Ozsahin, M., Pène, F., Touboul, E., Gindrey-Vie, B., Dominique, C., Lefkopoulos, D., Krzisch, C., Balosso, J., Vitu, L., & Schwartz, L. H. (1992). Total-body irradiation before bone marrow transplantation. Results of two randomized instantaneous dose rates in 157 patients. Cancer, 69, 2853–2865.10.1002/1097-0142(19920601)69:11<;2853::AID-CNCR2820691135>3.0.CO;2-2
  46. 46. Gogna, N. K., Morgan, G., Downs, K., Atkinson, K., & Biggs, J. (1992). Lung dose rate and interstitial pneumonitis in total body irradiation for bone marrow transplantation. Australas. Radiol., 36, 317–320.10.1111/j.1440-1673.1992.tb03208.x
  47. 47. Planskoy, B., Bedford, A. M., Davis, F. M., Tapper, P. D., & Loverock, L. T. (1996). Physical aspects of total-body irradiation at the Middlesex Hospital (UCL group of hospitals), London 1988–1993: I. Phantom measurements and planning methods. Phys. Med. Biol., 41, 2307–2326.10.1088/0031-9155/41/11/005
  48. 48. Yao, R., Bernard, D., Turian, J., Abrams, R. A., Sensakovic, W., Fung, H. C., & Chu, J. C. (2012). A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity. Med. Phys., 39, 2239–2248. DOI: 10.1118/1.3697526.10.1118/1.3697526
  49. 49. Malicki, J., Kosicka, G., Stryczyńska, G., & Wachowiak, J. (2001). Cobalt 60 versus 15 MeV photons during total body irradiation: doses in the critical organs and complexicity of the procedure. Ann. Transplant., 6, 18–22.
  50. 50. Malicki, J., Skrobala, A., Kosicka, G., & Wachowiak, J. (2005). The efficacy and reliability of lung protection during total body irradiation of patients with disseminated malignancies. Neoplasma, 52, 325–329.
  51. 51. Kawa-Iwanicka, A., Lobodziec, W., Dybek, M., Nenko, D., & Iwanicki, T. (2012). Dose distribution homogeneity in two TBI techniques-Analysis of 208 irradiated patients conducted in Stanislaw Leszczynski Memorial Hospital, Katowice. Rep. Pract. Oncol. Radiother., 17, 367–375. DOI: 10.1016/j.rpor.2012.07.013.10.1016/j.rpor.2012.07.013
  52. 52. Malicki, J. (1999). The accuracy of dose determination during total body irradiation. Strahlenther. Onkol., 175, 208–212.10.1007/BF02742397
  53. 53. Piotrowski, T., Adamska, K., & Malicki, J. (2007). Effect of scattered radiation in the total body irradiation technique: evaluation of the spoiler and wall dose component in the depth dose distribution. Nukleonika, 52(4), 153–158.
  54. 54. Shank, B., O’Reilly, R. J., Cunningham, I., Kernan, N., Yaholom, J., Brochstein, J., Castro-Malaspina, H., Kutcher, G. J., Mohan, R., & Bonfiglio, P. (1990). Total body irradiation for bone marrow transplantation: The Memorial Sloan-Kettering Cancer Center experience. Radiother. Oncol., 18, 68–81.10.1016/0167-8140(90)90180-5
  55. 55. Hui, S. K., Das, R. K., Thomadsen, B., & Henderson, D. (2004). CT-based analysis of dose homogeneity in total body irradiation using lateral beam. J. Appl. Clin. Med. Phys., 5, 71–79.10.1120/jacmp.v5i4.1980
  56. 56. Ozsahin, M., Belkacemi, Y., Pene, F., Dominique, C., Schwartz, L. H., Uzal, C., Lefkopoulos, D., Gindrey-Vie, B., Vitu-Loas, L., & Touboul, E. (1994). Total-body irradiation and cataract incidence: a randomized comparison of two instantaneous dose rates. Int. J. Radiat. Oncol. Biol. Phys., 28, 343–347.10.1016/0360-3016(94)90056-6
  57. 57. Burmeister, J., Nalichowski, A., Snyder, M., Halford, R., Baran, G., Loughery, B., Hammoud, A., Rakowski, J., & Bossenberger, T. (2018). Commissioning of a dedicated commercial Co-60 total body irradiation unit. J. Appl. Clin. Med. Phys., 19, 131–141. DOI: 10.1002/acm2.12309.10.1002/acm2.12309597870329527816
  58. 58. Snyder, M., Halford, R., Loughery, B., Nalichowski, A., Bossenberger, T., & Burmeister, J. (2017). Monte Carlo treatment planning for a new Co-60 total body irradiator. Med. Phys., 44, 2918.
  59. 59. Mackie, T. R., Holmes, T., Swerdloff, S., Reckwerdt, P., Deasy, J. O., Yang, J., Paliwal, B., & Kinsella, T. (1993). Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med. Phys., 20, 1709–1719.10.1118/1.5969588309444
  60. 60. Piotrowski, T., Skórska, M., Jodda, A., Ryczkowski, A., Kaźmierska, J., Adamska, K., Karczewska-Dzionk, A., Żmijewska-Tomczak, M., & Włodarczyk, H. (2012). Tomotherapy – different way of dose delivery in radiotherapy. Contemp. Oncol. (Pozn), 16, 16–25. DOI: 10.5114/wo.2012.27332.10.5114/wo.2012.27332368738023788850
  61. 61. Zeverino, M., Agostinelli, S., Taccini, G., Cavagnetto, F., Garelli, S., Gusinu, M., Vagge, S., Barra, S., & Corvò, R. (2012). Advances in the implementation of helical tomotherapy-based total marrow irradiation with a novel field junction technique. Med. Dosim., 37, 314–320. DOI: 10.1016/j.meddos.2011.12.001.10.1016/j.meddos.2011.12.00122326734
  62. 62. Hui, S. K., Kapatoes, J., Fowler, J., Henderson, D., Olivera, G., Manon, R. R., Gerbi, B., Mackie, T. R., & Welsh, J. S. (2005). Feasibility study of helical tomotherapy for total body or total marrow irradiation. Med. Phys., 32, 3214–3224. DOI: 10.1118/1.2044428.10.1118/1.204442816279075
  63. 63. Wong, J. Y., Liu, A., Schultheiss, T., Popplewell, L., Stein, A., Rosenthal, J., Essensten, M., Forman, S., & Somlo, G. (2006). Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol. Blood Marrow Transplant., 12, 306–315. DOI: 10.1016/j. bbmt.2005.10.026.10.1016/j.bbmt.2005.10.026
  64. 64. Schultheiss, T. E., Wong, J., Liu, A., Olivera, G., & Somlo, G. (2007). Image-guided total marrow and total lymphatic irradiation using helical tomotherapy. Int. J. Radiat. Oncol. Biol. Phys., 67, 1259–1267. DOI: 10.1016/j.ijrobp.2006.10.047.10.1016/j.ijrobp.2006.10.047
  65. 65. Wong, J. Y., Rosenthal, J., Liu, A., Schultheiss, T., Forman, S., & Somlo, G. (2009). Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int. J. Radiat. Oncol. Biol. Phys., 73, 273–279. DOI: 10.1016/j.ijrobp.2008.04.071.10.1016/j.ijrobp.2008.04.071
  66. 66. Shueng, P. W., Lin, S. C., Chong, N. S., Lee, H. Y., Tien, H. J., Wu, L. J., Chen, C. A., Lee, J. J., & Hsieh, C. H. (2009). Total marrow irradiation with helical tomotherapy for bone marrow transplantation of multiple myeloma: first experience in Asia. Technol. Cancer Res. Treat., 8, 29–38. DOI: 10.1177/153303460900800105.10.1177/153303460900800105
  67. 67. Konstanty, E., Malicki, J., Łagodowska, K., & Kowalik, A. (2017). Dosimetric verification of dose calculation algorithm in the lung during total marrow irradiation using helical tomotherapy. J. Cancer Res. Ther., 13, 33–37. DOI: 10.4103/jcrt.JCRT_980_15.10.4103/jcrt.JCRT_980_15
  68. 68. Piotrowski, T., Czajka, E., Bak, B., Kazmierska, J., Skorska, M., Ryczkowski, A., Adamczyk, M., & Jodda, A. (2014). Tomotherapy: Implications on daily workload and scheduling patients based on three years’ institutional experience. Technol. Cancer Res. Treat., 13, 233–242. DOI: 10.7785/tcrt.2012.500374.10.7785/tcrt.2012.500374
  69. 69. Takahashi, Y., & Hui, S. K. (2013). Impact of very long time output variation in the treatment of total marrow irradiation with helical tomotherapy. Radiat. Oncol., 8, 123. DOI: 10.1186/1748-717X-8-123.10.1186/1748-717X-8-123
  70. 70. Roeske, J. C., Lujan, A., & Rotmensch, J. (2000). Intensity-modulated whole pelvic radiation therapy in patients with gynecologic malignancies. Int. J. Radiat. Oncol. Biol. Phys., 48, 1613–1621.10.1016/S0360-3016(00)00771-9
  71. 71. Wu, Q., Arnfield, M., & Tong, S. (2000). Dynamic splitting of large intensity-modulated fields. Phys. Med. Biol., 45, 1731–1740.10.1088/0031-9155/45/7/30210943915
  72. 72. Aydogan, B., Mundt, A. J., & Roeske, J. C. (2006). Linac-based Intensity Modulated Total Marrow Irradiation (IM-TMI). Technol. Cancer Res. Treat., 5, 513–519. DOI: 10.1177/153303460600500508.10.1177/15330346060050050816981794
  73. 73. Yeginer, M., Roeske, J. C., Radosevich, J. A., & Aydogan, B. (2011). Linear accelerator-based intensity-modulated total marrow irradiation technique for treatment of hematologic malignancies: a dosimetric feasibility study. Int. J. Radiat. Oncol. Biol. Phys., 79, 1256–1265. DOI: 10.1016/j.ijrobp.2010.06.029.10.1016/j.ijrobp.2010.06.02921035960
  74. 74. Bush, K., Townson, R., & Zavgorodni, S. (2008). Monte Carlo simulation of RapidArc radiotherapy delivery. Phys. Med. Biol., 53, N359–N370. DOI: 10.1088/0031-9155/53/19/N01.10.1088/0031-9155/53/19/N0118758001
  75. 75. Mancosu, P., Cozzi, L., & Muren, L. P. (2019). Total marrow irradiation for hematopoietic malignancies using volumetric modulated arc therapy: A review of treatment planning studies. Phys. Imaging Radiat. Oncol., 11, 47–53. DOI: 10.1016/j.phro.2019.08.001.10.1016/j.phro.2019.08.001780786633458277
  76. 76. Korreman, S., Medin, J., & Kjaer-Kristoffersen, F. (2009). Dosimetric verification of RapidArc treatment delivery. Acta Oncol., 48, 185–191. DOI: 10.1080/02841860802287116.10.1080/0284186080228711618777411
  77. 77. Fogliata, A., Cozzi, L., Clivio, A., Ibatici, A., Mancosu, P., Navarria, P., Nicolini, G., Santoro, A., Vanetti, E., & Scorsetti, M. (2011). Preclinical assessment of volumetric modulated arc therapy for total marrow irradiation. Int. J. Radiat. Oncol. Biol. Phys., 80, 628–636. DOI: 10.1016/j.ijrobp.2010.11.028.10.1016/j.ijrobp.2010.11.02821277109
  78. 78. Aydogan, B., Yeginer, M., Kavak, G. O., Fan, J., Radosevich, J., & Gwe-Ya, K. (2011). Total marrow irradiation with rapidarc volumetric arc therapy. Int. J. Radiat. Oncol. Biol. Phys., 81, 592–599. DOI: 10.1016/j. ijrobp.2010.11.035.10.1016/j.ijrobp.2010.11.035
  79. 79. Han, C., Schultheiss, T. E., & Wong, J. Y. C. (2012). Dosimetric study of volumetric modulated arc therapy fields for total marrow irradiation. Radiother. Oncol., 102, 315–320. DOI: 10.1016/j.radonc.2011.06.005.10.1016/j.radonc.2011.06.00521724284
  80. 80. Surucu, M., Yeginer, M., Kavak, G. O., Fan, J., Radosevich, J. A., & Aydogan, B. (2012). Verification of dose distribution for volumetric modulated arc therapy total marrow irradiation in a humanlike phantom. Med. Phys., 39, 281–288. DOI: 10.1118/1.3668055.10.1118/1.366805522225298
  81. 81. Symons, K., Morrison, C., Parry, J., Woodings, S., & Zissiadis, Y. (2018). Volumetric modulated arc therapy for total body irradiation: A feasibility study using Pinnacle3 treatment planning system and Elekta AgilityTM linac. J. Appl. Clin. Med. Phys., 19, 103–110. DOI: 10.1002/acm2.12257.10.1002/acm2.12257584985629368389
  82. 82. Mancosu, P., Navarria, P., Castagna, L., Reggiori, G., Sarina, B., Tomatis, S., Alongi, F., Nicolini, G., Fogliata, A., Cozzi, L., & Scorsetti, M. (2013). Interplay effects between dose distribution quality and positioning accuracy in total marrow irradiation with volumetric modulated arc therapy. Med. Phys., 40, 111713. DOI: 10.1118/1.4823767.10.1118/1.482376724320421
  83. 83. Mancosu, P., Navarria, P., Castagna, L., Reggiori, G., Stravato, A., Gaudino, A., Sarina, B., Tomatis, S., & Scorsetti, M. (2015). Plan robustness in field junction region from arcs with different patient orientation in total marrow irradiation with VMAT. Phys. Med., 31, 677–682. DOI: 10.1016/j.ejmp.2015.05.012.10.1016/j.ejmp.2015.05.01226068115
  84. 84. Mancosu, P., Navarria, P., Reggiori, G., Cozzi, L., Fogliata, A., Gaudino, A., Lobefalo, F., Paganini, L., Palumbo, V., Sarina, B., Stravato, A., Castagna, L., Tomatis, S., & Scorsetti, M. (2015). In-vivo dosimetry with Gafchromic films for multi-isocentric VMAT irradiation of total marrow lymph-nodes: a feasibility study. Radiat. Oncol., 10, 86. DOI: 10.1186/s13014-015-0391-y.10.1186/s13014-015-0391-y439769425881084
  85. 85. Accuray Inc. (2017). PreciseARTTM adaptive radiation therapy option. Retrieved September 1, 2019, from https://www.accuray.com/wp-content/uploads/rx-preciseart-mkt-txplg-0217-0031-1.pdf.
  86. 86. Xie, C., Xu, S., Xu, W., Cong, X., Ge, R., Gong, H., Ju, Z., & Dai, X. (2015). Patient-specific dose verification method using ArcCHECK for total marrow irradiation with intensity modulated arc therapy. Zhongguo Yi Liao Qi Xie Za Zhi, 39, 68–71. (in Chinese).
  87. 87. Bao, Z., Zhao, H., Wang, D., Gong, J., Zhong, Y., Xiong, Y., Deng, D., Xie, C., Liu, A., Wang, X., & Liu, H. (2018). Feasibility of a novel dose fractionation strategy in TMI/TMLI. Radiat. Oncol., 13, 248. DOI: 10.1186/s13014-018-1201-0.10.1186/s13014-018-1201-0629605430558631
DOI: https://doi.org/10.2478/nuka-2020-0003 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 19 - 30
Submitted on: May 17, 2019
|
Accepted on: Oct 10, 2019
|
Published on: Mar 20, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Joanna Litoborska, Tomasz Piotrowski, Agata Jodda, Julian Malicki, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.