Have a personal or library account? Click to login

Effect of electronic cigarette (EC) aerosols on particle size distribution in indoor air and in a radon chamber

Open Access
|Mar 2019

References

  1. 1. WHO. (2008). Monitoring tobacco use and prevention policies prevalence of adult tobacco use in the 14 countries that completed the global adult tobacco survey.
  2. 2. WHO. (2004). Tobacco smoke and involuntary smoking. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 83). Lyon: WHO, IARC.
  3. 3. Glasser, A. M., Collins, L., Pearson, J. L., Abudayyeh, H., Niaura, R. S., Abrams, D. B., & Villanti, A. C. (2017). Overview of electronic nicotine delivery systems. Am. J. Prev. Med., 52(2), e33–e66. doi: 10.1016/j.amepre.2016.10.036.10.1016/j.amepre.2016.10.036525327227914771
  4. 4. Brown, C. J., & Cheng, J. M. (2014). Electronic cigarettes: product characterisation and design considerations. Tobacco Control, 23, ii4–ii10.10.1136/tobaccocontrol-2013-051476399527124732162
  5. 5. Abul, M., Prasad, S., Liles, T., & Cucullo, L. (2016). A decade of e-cigarettes: Limited research and unresolved safety concerns. Toxicology, 365, 67–75.10.1016/j.tox.2016.07.020499366027477296
  6. 6. Grana, R., Benowitz, N., & Glantz, S. A. (2014). E-cigarettes: A scientific review. Circulation, 129, 1972–1986.10.1161/CIRCULATIONAHA.114.007667401818224821826
  7. 7. Wieslander, G., Norbäck, D., & Lindgren, T. (2001). Experimental exposure to propylene glycol mist in aviation emergency training: Acute ocular and respiratory effects. Occup. Environ. Med., 58, 649–655.10.1136/oem.58.10.649174004711555686
  8. 8. Fuoco, F. C., Buonanno, G., Stabile, L., & Vigo, P. (2014). Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ. Pollut., 184, 523–529.10.1016/j.envpol.2013.10.01024172659
  9. 9. Sosnowski, T. R., & Odziomek, M. (2018). Particle size dynamics: Toward a better understanding of electronic cigarette aerosol interactions with the respiratory system. Front. Physiol., 9, article 853, 1–8. doi: 10.3389/fphys.2018.00853.10.3389/fphys.2018.00853604640830038580
  10. 10. Ciuzas, D., Prasauskas, T., Krugly, E., Sidaraviciute, R., Jurelionis, A., Seduikyte, L., Kauneliene, V., Wierzbicka, A., & Martuzevicius, D. (2015). Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality. Atmos. Environ., 118, 107–117.10.1016/j.atmosenv.2015.07.044
  11. 11. Robinson, R. J., & Yu, C. P. (2001). Aerosol science and technology deposition of cigarette smoke particles in the human respiratory tract deposition of cigarette smoke particles in the human respiratory tract. Aerosol Sci. Technol., 34, 202–215.10.1080/027868201300034844
  12. 12. Ingebrethsen, B. J., Alderman, S. L., & Ademe, B. (2011). Coagulation of mainstream cigarette smoke in the mouth during puffing and inhalation. Aerosol Sci. Technol., 45(12), 1422–1428.10.1080/02786826.2011.596863
  13. 13. Manigrasso, M., Buonanno, G., Fuoco, F. C., Stabile, L., & Avino, P. (2015). Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environ. Pollut., 196, 257–267.10.1016/j.envpol.2014.10.01325463721
  14. 14. Belka, L., Lizal, F., Jedelsky, J., Jicha, M., & Pospisil, J. (2017). Measurement of an electronic cigarette aerosol size distribution during a puff. EPJ Conf., 143, 02006. DOI: 10.1051/epjconf/201714302006.10.1051/epjconf/201714302006
  15. 15. Schripp, T., Markewitz, D., Uhde, E., & Salthammer, T. (2013). Does e-cigarette consumption cause passive vaping? Indoor Air, 23(1), 25–31.10.1111/j.1600-0668.2012.00792.x22672560
  16. 16. Yuness, M., Mohamed, A., AbdEl-hady, M., Moustafa, M., & Nazmy, H. (2015). Effect of indoor activity size distribution of 222Rn progeny in-depth dose estimation. Appl. Radiat. Isot., 97, 34–39.10.1016/j.apradiso.2014.12.00225528018
  17. 17. Yuness, M., Mohamed, A., Nazmy, H., Moustafa, M., & Abd El-hady, M. (2016). Indoor activity size distribution of the short-lived radon progeny. Stoch. Environ. Res. Risk Assess., 30(1), 167–174.10.1007/s00477-015-1057-x
  18. 18. Mohamed, A., Abd El-hady, M., Moustafa, M., & Yuness, M. (2014). Deposition pattern of inhaled radon progeny size distribution in human lung. J. Radiat. Res. Appl. Sci., 7(3), 333–337.10.1016/j.jrras.2014.05.004
  19. 19. Mostafa, Y., Mohamed, A., Abd El-hady, M., Moustafa, M., & Nazmy, H. (2015). Indoor activity of short-lived radon progeny as critical parameter in dose assessment. Solid State Phenom., 238, 151–160.10.4028/www.scientific.net/SSP.238.151
  20. 20. Mostafa, Y. A. M., Vasyanovich, M., Zhukovsky, M., & Zaitceva, N. (2015). Calibration system for radon EEC measurements. Radiat. Prot. Dosim., 164(4), 587–590.10.1093/rpd/ncv31625979737
  21. 21. Khalaf, H. N., Vasyanovich, M., Mostafa, M. Y. A., & Zhukovsky, M. (2019). Comparison of radioactive aerosol size distributions (Activity, number, mass, and surface area). Appl. Radiat. Isot., 145, 95–100.10.1016/j.apradiso.2018.12.02230590349
  22. 22. Nazmy, H., Mostafa, M. Y. A., & Zhukovsky, M. (2018). Particle size distribution of e-cigarette aerosols in indoor air. J. Radiat. Nucl. Appl., 3(2), 111–117.10.18576/jrna/030206
  23. 23. Khalaf, H. N. B., Mostafa, M. Y. A., & Zhukovsky, M. (2018). Radiometric efficiency of analytical filters at different physical conditions. J. Radioanal. Nucl. Chem. https://doi.org/10.1007/s10967-018-6347-6.10.1007/s10967-018-6347-6
  24. 24. Vasyanovich, M., Mostafa, M. Y. A., & Zhukovsky, M. (2017). Ultrafine aerosol influence on the sampling by cascade impactor. Radiat. Prot. Dosim., 177(1/2), 49–52.10.1093/rpd/ncx16929036634
  25. 25. Nazaroff, W. W. (1980). An improved technique for measuring working level of radon daughters in residences. Health Phys., 45, 509–523.
  26. 26. Mostafa, Y. A. M., Vasyanovich, M., & Zhukovsky, M. (2016). Prototype of a primary calibration system for measurement of radon activity concentration. Appl. Radiat. Isot., 107, 109–112.10.1016/j.apradiso.2015.10.01426490512
  27. 27. Mostafa, Y. A. M., Vasyanovich, M., & Zhukovsky, M. (2017). A primary standard source of radon-222 based on the HPGe detector. Appl. Radiat. Isot., 120, 101–105.10.1016/j.apradiso.2016.12.01227984708
  28. 28. Zhukovsky, M., Rogozina, M., & Suponkina, A. (2014). Size distribution of radon decay products in the range 0.1–10 nm. Radiat. Prot. Dosim., 160(1/3), 192–195.10.1093/rpd/ncu08424711527
  29. 29. Rogozina, M., Zhukovsky, M., Ekidin, A., & Vasyanovich, M. (2014). Thoron progeny size distribution in monazite storage facility. Radiat. Prot. Dosim., 162(1/2), 10–13.10.1093/rpd/ncu20825004938
  30. 30. Biennann, A. H., & Sawyer, S. S. (1995). Attachment of radon progeny to cigarette-smoke aerosols. U.S. Department of Energy by Lawrence Livermore National Laboratory. (Contract no. W-740S-ENG-48).10.2172/78555
  31. 31. Muller, W. J., Scherer, P. W., & Hess, G. D. (1990). A model of cigarette smoke particle deposition. Am. Ind. Hyg. Assoc. J., 51(5), 245–256.10.1080/152986690913696002346112
  32. 32. Morawska, L., & Phillips, C. R. (2007). Aerosol science and technology attachment of radon progeny to cigarette smoke aerosol attachment of radon progeny to cigarette smoke aerosol. Aerosol Sci. Technol., 17(3), 149–158.10.1080/02786829208959567
  33. 33. Tu, K. W., & Knutson, E. O. (1988). Indoor radon progeny particle size distribution measurements made with two different methods. Radiat. Prot. Dosim., 24(1/4), 251–255.10.1093/oxfordjournals.rpd.a080280
  34. 34. Holub, R. F., Knutson, E. O., & Solomon, S. (1988). Tests of the graded wire screen technique for measuring the amount and size distribution of unattached radon progeny. Radiat. Prot. Dosim., 24(9), 265–268.10.1093/oxfordjournals.rpd.a080283
DOI: https://doi.org/10.2478/nuka-2019-0004 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 31 - 38
Submitted on: Sep 11, 2018
Accepted on: Dec 28, 2018
Published on: Mar 2, 2019
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2019 Hyam Nazmy Khalaf, Mostafa Y. A. Mostafa, Michael Zhukovsky, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.