Have a personal or library account? Click to login
Design and simulation of a multienergy gamma ray absorptiometry system for multiphase flow metering with accurate void fraction and water-liquid ratio approximation
2. Holstad, M. B. (2004). Gamma-ray scatter methods applied to industrial measurement systems. Unpublished Ph.D. thesis, Department of Physics and Technology, University of Bergen, Norway.
3. Scheers, A., & Letton, W. (1996). An oil/water/gas composition meter based on multiple energy gamma ray absorption (MEGRA) measurement. In Proceedings of 14th North Sea Flow Measurement Workshop.
5. Salgado, C., Brandao, L. E. B., Conti, C. C., & Salgado, W. L. (2016). Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks. Appl. Radiat. Isot., 116, 143–149.10.1016/j.apradiso.2016.08.001
6. AL-Qutami, T. A., Ibrahim, R., Ismail, I., & Ishak, M. A. (2018). Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing. Expert Syst. Appl., 93, 72–85.10.1016/j.eswa.2017.10.014
8. Nazemi, E., Roshani, G. H., Feghhi, S. A. H., Setayeshi, S., Eftekhari Zadeh, E., & Fatehi, A. (2016). Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy, 41(18), 7438–7444.10.1016/j.ijhydene.2015.12.098
10. Johansen, G. A., & Tjugum, S. -A. (2007). Fluid composition analysis by multiple gamma-ray beam and modality measurements. In 25th International North Sea Flow Measurement Workshop, Citeseer.
11. Åbro, E., Khoryakov, V. A., Johansen, G. A., & Koc-bach, L. (1999). Determination of void fraction and flow regime using a neural network trained on simulated data based on gamma-ray densitometry. Meas. Sci. Technol., 10(7), 619–630.10.1088/0957-0233/10/7/308
12. Roshani, G. H., Feghhi, S. A. H., & Setayeshi, S. (2015). Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network. Radiat. Meas., 82, 154–162.10.1016/j.radmeas.2015.07.006
13. Salgado, C. M., Brandão, L. E., Pereira, C. M., & Salgado, W. L. (2014). Salinity independent volume fraction prediction in annular and stratified (water-gas-oil) multiphase flows using artificial neural networks. Prog. Nucl. Energy, 76, 17–23.10.1016/j.pnucene.2014.05.004
14. Salgado, C. M., Pereira, C. M., Schirru, R., & Brandão, L. E. (2010). Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks. Prog. Nucl. Energy, 52(6), 555–562.10.1016/j.pnucene.2010.02.001
15. Srinivasan, Ravichandran, Chan, Vidhya, & Ramakirishnan, Krishnan. (2002). Exponentiated backpropagation algorithm for multilayer feedforward neural networks. In Proceedings of the 9th International Conference on Neural Information Processing, pp. 227–331.10.1109/ICONIP.2002.1202187
16. Kamarthi, S. V., & Pittner, S. (1999). Accelerating neural network training using weight extrapolation. Neural Netw., 12(9), 1285–1299.10.1016/S0893-6080(99)00072-6
17. More, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson (Ed.), Numerical analysis. (Lecture Notes in Mathematics, Vol. 630). Berlin, Heidelberg: Springer.10.1007/BFb0067700