Have a personal or library account? Click to login

Design and simulation of a multienergy gamma ray absorptiometry system for multiphase flow metering with accurate void fraction and water-liquid ratio approximation

Open Access
|Mar 2019

References

  1. 1. Scheers, A. M. (2000). An oil/water/gas composition meter based on multiple energy gamma ray absorption (MEGRA) measurement. ETDEWEB ID:20061564.
  2. 2. Holstad, M. B. (2004). Gamma-ray scatter methods applied to industrial measurement systems. Unpublished Ph.D. thesis, Department of Physics and Technology, University of Bergen, Norway.
  3. 3. Scheers, A., & Letton, W. (1996). An oil/water/gas composition meter based on multiple energy gamma ray absorption (MEGRA) measurement. In Proceedings of 14th North Sea Flow Measurement Workshop.
  4. 4. Blaney, S. (2008). Gamma radiation methods for clamp-on multiphase flow metering. Unpublished PhD thesis, Cranfield University.
  5. 5. Salgado, C., Brandao, L. E. B., Conti, C. C., & Salgado, W. L. (2016). Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks. Appl. Radiat. Isot., 116, 143–149.10.1016/j.apradiso.2016.08.001
  6. 6. AL-Qutami, T. A., Ibrahim, R., Ismail, I., & Ishak, M. A. (2018). Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing. Expert Syst. Appl., 93, 72–85.10.1016/j.eswa.2017.10.014
  7. 7. Roshani, G., Nazemi, E., & Roshani, M. (2017). Flow regime independent volume fraction estimation in three-phase flows using dual-energy broad beam technique and artificial neural network. Neural Comput. Appl., 28(Suppl. 1), 1265–1274.10.1007/s00521-016-2784-8
  8. 8. Nazemi, E., Roshani, G. H., Feghhi, S. A. H., Setayeshi, S., Eftekhari Zadeh, E., & Fatehi, A. (2016). Optimization of a method for identifying the flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrog. Energy, 41(18), 7438–7444.10.1016/j.ijhydene.2015.12.098
  9. 9. Johansen, G., & Jackson, P. (2000). Salinity independent measurement of gas volume fraction in oil/gas/water pipe flows. Appl. Radiat. Isot., 53(4), 595–601.10.1016/S0969-8043(00)00232-3
  10. 10. Johansen, G. A., & Tjugum, S. -A. (2007). Fluid composition analysis by multiple gamma-ray beam and modality measurements. In 25th International North Sea Flow Measurement Workshop, Citeseer.
  11. 11. Åbro, E., Khoryakov, V. A., Johansen, G. A., & Koc-bach, L. (1999). Determination of void fraction and flow regime using a neural network trained on simulated data based on gamma-ray densitometry. Meas. Sci. Technol., 10(7), 619–630.10.1088/0957-0233/10/7/308
  12. 12. Roshani, G. H., Feghhi, S. A. H., & Setayeshi, S. (2015). Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network. Radiat. Meas., 82, 154–162.10.1016/j.radmeas.2015.07.006
  13. 13. Salgado, C. M., Brandão, L. E., Pereira, C. M., & Salgado, W. L. (2014). Salinity independent volume fraction prediction in annular and stratified (water-gas-oil) multiphase flows using artificial neural networks. Prog. Nucl. Energy, 76, 17–23.10.1016/j.pnucene.2014.05.004
  14. 14. Salgado, C. M., Pereira, C. M., Schirru, R., & Brandão, L. E. (2010). Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks. Prog. Nucl. Energy, 52(6), 555–562.10.1016/j.pnucene.2010.02.001
  15. 15. Srinivasan, Ravichandran, Chan, Vidhya, & Ramakirishnan, Krishnan. (2002). Exponentiated backpropagation algorithm for multilayer feedforward neural networks. In Proceedings of the 9th International Conference on Neural Information Processing, pp. 227–331.10.1109/ICONIP.2002.1202187
  16. 16. Kamarthi, S. V., & Pittner, S. (1999). Accelerating neural network training using weight extrapolation. Neural Netw., 12(9), 1285–1299.10.1016/S0893-6080(99)00072-6
  17. 17. More, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson (Ed.), Numerical analysis. (Lecture Notes in Mathematics, Vol. 630). Berlin, Heidelberg: Springer.10.1007/BFb0067700
DOI: https://doi.org/10.2478/nuka-2019-0003 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 19 - 29
Submitted on: Jun 6, 2018
Accepted on: Dec 14, 2018
Published on: Mar 2, 2019
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Omid Khayat, Hossein Afarideh, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.