Have a personal or library account? Click to login

Radicals initiated by gamma rays in selected amino acids and collagen

Open Access
|Mar 2019

References

  1. 1. Samsell, B. J., & Moore, M. A. (2012). Use of controlled low dose gamma irradiation to sterilize allograft tendons for ACL reconstruction: biomechanical and clinical perspective. Cell Tissue Bank., 13, 217–223. doi.org/10.1007/s10561-011-9251-7.10.1007/s10561-011-9251-7
  2. 2. Balsly, C. R., Cotter, A. T., Williams, L. A., Gaskins, B. D., Moore, M. A., & Wolfinbarger Jr., L. (2008). Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank., 9, 289–298. doi.org/10.1007/s10561-008-9069-0.10.1007/s10561-008-9069-0
  3. 3. Greaves, L. L., Hecker, A. T., & Brown, C. H. (2008). The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Am. J. Sports Med., 36, 1358–1366. doi.org/10.1177/0363546508314394.10.1177/0363546508314394
  4. 4. Singh, R., Singh, D., & Singh, A. (2016). Radiation sterilization of tissue allografts: A review. World J. Radiol., 8, 355–369. doi.org/10.4329/wjr.v8.i4.355.10.4329/wjr.v8.i4.355
  5. 5. Leroy, M., Labbé, J. F., Ouellet, M., Jean, J., Lefèvre, T., Laroche, G., Auger, M., & Pouliot, R. (2014). A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater., 10, 2703–2711. doi.org/10.1016/j.actbio.2014.02.007.10.1016/j.actbio.2014.02.007
  6. 6. Pietrucha, K. (2015). Physicochemical properties of 3D collagen-CS scaffolds for potential use in neural tissue engineering. Int. J. Biol. Macromol., 80, 732–739. doi.org/10.1016/j.ijbiomac.2015.07.005.10.1016/j.ijbiomac.2015.07.005
  7. 7. Madison, S. A., McCallum, J. E. B., & Rojas-Wahl, R. U. (2002). Hydroperoxide formation in model collagens and collagen type I. Int. J. Cosm. Sci., 24, 43–52. doi.org/10.1046/j.0412-5463.2001.00114.x.10.1046/j.0412-5463.2001.00114.x
  8. 8. Davies, M. J. (2016). Protein oxidation and peroxidation. Biochem. J., 473, 805–825. doi.org/10.1042/BJ20151227N.10.1042/BJ20151227
  9. 9. Szpak, P. (2011). Fish bone chemistry and ultra-structure: Implications for taphonomy and stable isotope analysis. J. Arch. Sci., 38(12), 3358–3372. doi: 10.1016/j.jas.2011.07.022.10.1016/j.jas.2011.07.022
  10. 10. Chipara, M., Reyes-Romero, J., Ignat, M., Constantinescu, B., & Secu, C. (2003). ESR studies on collagen irradiated with protons. Polym. Degrad. Stab., 80, 45–49. doi.org/10.1016/S0141-3910(02)00381-6.10.1016/S0141-3910(02)00381-6
  11. 11. Bowes, J. H., & Moss, J. A. (1962). The effect of gamma radiation on collagen1. Radiat. Res., 16, 211–223. doi.org/10.2307/3571153.10.2307/3571153
  12. 12. Syrstad, E. A., & Tureček, F. J. (2005). Toward a general mechanism of electron capture dissociation. Am. Soc. Mass Spectr., 16, 208–224. doi.org/10.1016/j.jasms.2004.11.001.10.1016/j.jasms.2004.11.001
  13. 13. Symons, M. C. R. (1996). Radicals generated by bone cutting and fracture. Free Rad. Biol. Med., 20(6), 831–835.10.1016/0891-5849(95)02174-4
  14. 14. Smith, G. J. (1995). New trends in photobiology. Photodegradation of keratin and other structural proteins. J. Photochem. Photobiol. B-Biol., 27, 187–198. doi.org/10.1016/1011-1344(94)07104-V.10.1016/1011-1344(94)07104-
  15. 15. Nomura, S., Hiltner, A., Lando, J. B., & Baer, E. (1977). Interaction of water with native collagen. Biopolym. J., 16, 231–246. doi.org/10.1002/bip.1977.360160202.10.1002/bip.1977.360160202831859
  16. 16. Gauza-Włodarczyk, M., Kubisz, L., & Włodarczyk, D. (2017). Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int. J. Biol. Macromol., 104, 987–991. doi.org/10.1016/j.ijbiomac.2017.07.013.10.1016/j.ijbiomac.2017.07.01328687386
  17. 17. Dziedzic-Goclawska, A., Kaminski, A., Uhrynowska-Tyszkiewicz, I., & Stachowicz, W. (2005). Irradiation as a safety procedure in tissue banking. Cell Tissue Bank., 6, 201–219. doi.org/10.1007/s10561-005-0338-x.10.1007/s10561-005-0338-x16151960
  18. 18. Ciesielska, B., Schultka, K., Penkowski, M., & Sagstuen, E. (2004). EPR study of light illumination effects on radicals in gamma-irradiated L-alanine. Spectrochim. Acta Part A, 60, 1327–1333. doi: 10.1016/j.saa.2003.10.030.10.1016/j.saa.2003.10.03015134731
  19. 19. Ban, F., Gauld, J. W., & Boyd, R. J. (2000). Theoretical studies of the radiation products of hydroxyproline. J. Phys. Chem. A, 104, 8583–8592. doi.org/10.1021/jp001692g.10.1021/jp001692g
  20. 20. Aboelezz, E., & Hassan, G. M. (2018). Resolving the limitations of using glycine as EPR dosimeter in the intermediate level of gamma dose. Radiat. Phys. Chem., 145, 5–10. doi.org/10.1016/j.radphyschem.2017.12.006.10.1016/j.radphyschem.2017.12.006
  21. 21. Sanderud, A., & Sagstuen, E. J. (1998). EPR and ENDOR studies of single crystals of α-glycine X-ray irradiated at 295 K. J. Phys. Chem. B, 102, 9353–9361. doi.org/10.1021/jp982932j.10.1021/jp982932j
  22. 22. Aydin, M., & Osmanoglu, Y. E. (2011). EPR study of free radicals in amino acids derivatives by gamma rays. Rom. J. Phys., 56, 1156–1161. doi.org/10.1016/j.msec.2017.06.012.10.1016/j.msec.2017.06.01228866189
  23. 23. Kornacka, E. M., Przybytniak, G., & Zimek, Z. (2018). Radicals initiated by gamma-rays in collagen and its main components. Radiat. Phys. Chem., 142, 4–8.10.1016/j.radphyschem.2017.03.034
  24. 24. Brustolon, M., Chis, V., & Maniero, A. L. (1997). New radical detected by HF-EPR, ENDOR, and pulsed EPR in a room temperature irradiated single crystal of glycine. J. Phys. Chem. A, 101, 4887–4892. doi.org/10.1021/jp970347x.10.1021/jp970347x
  25. 25. Nelson, W. H. (1988). ESR and ENDOR studies of radicals produced in hydroxyproline single crystals by x-irradiation at low temperatures. J. Phys. Chem., 92, 554–561. doi.org/10.1021/j100313a060.10.1021/j100313a060
  26. 26. Nelson, W. H., & Nave, C. R. (1981). ESR and ENDOR studies of radicals produced in hydroxyproline single crystals by x irradiation at low temperature. J. Chem. Phys., 74, 2710–2716. doi.org/10.1063/1.441440.10.1063/1.441440
  27. 27. Matysik, J., Alia, Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci., 82, 525–532. www.jstor.org/stable/24105959.
  28. 28. Rawadieh, S., Altarawneh, I., Alateyat, H. B., & Altarawneh, M. (2013). Theoretical study on the unimolecular decomposition of proline. Comput. Theor. Chem., 1018, 45–49. doi.org/10.1016/j.comptc.2013.05.034.10.1016/j.comptc.2013.05.034
DOI: https://doi.org/10.2478/nuka-2019-0002 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 11 - 17
Submitted on: Nov 12, 2018
Accepted on: Dec 28, 2018
Published on: Mar 2, 2019
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Grażyna Przybytniak, Jarosław Sadło, Małgorzata Dąbrowska, Zbigniew Zimek, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.