Have a personal or library account? Click to login
Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. II. Application of radiotracers in copper leaching from flotation tailings Cover

Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. II. Application of radiotracers in copper leaching from flotation tailings

Open Access
|Jan 2019

References

  1. 1. Kijewski, P., & Downorowicz, S. (1987). Odpady pofl otacyjne rudy miedzi jako potencjalna rezerwa surowcowa. Fizykochemiczne Problemy Mineralurgii, 19, 205-211.
  2. 2. Kisielowska, E., Kasińska-Pilut, E., & Jaśkiewicz, J. (2007). Badania nad wpływem wybranych czynników fi zykochemicznych na efektywność procesu bioługowania odpadów pofl otacyjnych przy wykorzystaniu grzybów pleśniowych z gatunku Aspergillus niger. Górnictwo i Geoinżynieria, 31(3/1), 247-255.
  3. 3. Kotarska, I. (2012). Odpady wydobywcze z górnictwa miedzi w Polsce - bilans, stan zagospodarowania i aspekty środowiskowe. Cuprum, 4(65), 45-63.
  4. 4. Baran, A., Śliwka, M., & Lis, M. (2013). Selected properties of flotation tailings wastes deposited in the Gilów and Żelazny Most waste reservoirs regarding their potential environmental management. Arch. Min. Sci., 58(3), 969-978. DOI: 10.2478/amsc-2013-0068.10.2478/amsc-2013-0068
  5. 5. Łuszczkiewicz, A. (2000). Koncepcje wykorzystania odpadów fl otacyjnych z przeróbki rud miedzi w regionie legnicko-głogowskim. Inżynieria Mineralna, 1(1), 25-35.
  6. 6. Ahmed, I. M., Nayl, A. A., & Daoud, J. A. (2016). Leaching and recovery of zinc and copper from brass slag by sulfuric acid. J. Saudi Chem. Soc., 20, S280-S285. DOI: 10.1016/j.jscs.2012.11.003.10.1016/j.jscs.2012.11.003
  7. 7. Urosevic, D. M., Dimitrijevic, M. D., & Jankovic, Z. D. (2015). Recovery of copper from copper slag and copper slag fl otation tailings by oxidative leaching. Physicochem. Probl. Miner. Pro., 51(1), 73-82. DOI: 10.5277/ppmp150107.10.5277/ppmp150107
  8. 8. Mohanty, U. S., Rintala, L., Halli, P., Taskinen, P., & Lundström, M. (2018). Hydrometallurgical approach for leaching of metals from copper rich side stream originating from base metal production. Metals, 8(1), 40(12 pp.). DOI: 10.3390/met8010040.10.3390/met8010040
  9. 9. Antonijević, M. M., Dimitrijević, M. D., Stevanović, Z. O., Serbula, S. M., & Bogdanovic, G. D. (2008). Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. J. Hazard. Mater., 158(1), 23-34. DOI: 10.1016/j.jhazmat.2008.01.063.10.1016/j.jhazmat.2008.01.06318329798
  10. 10. Barton, I., Ahn, J., & Lee, J. (2018). Mineralogical and metallurgical study of supergene ores of the mike Cu-Au (-Zn) deposit, Carlin trend, Nevada. Hydrometallurgy, 176, 176-191. DOI: 10.1016/j.hydromet.2018.01.022.10.1016/j.hydromet.2018.01.022
  11. 11. Bulut, G. (2006). Recovery of copper and cobalt from ancient slag. Waste Manage. Res., 24(2), 118-124. DOI: 10.1177/0734242X06063350.10.1177/0734242X0606335016634226
  12. 12. Muravyov, M. I., Fomchenko, N. V., Usoltsev, A. V., Vasilyev, E. A., & Kondrat’eva, T. F. (2012). Leaching of copper and zinc from copper converter slag fl otation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy, 119/120, 40-46. DOI: 10.1016/j.hydromet.2012.03.001.10.1016/j.hydromet.2012.03.001
  13. 13. Wang, Y., Wen, S., Feng, Q., Xian, Y., & Liu, D. (2015). Leaching characteristics and mechanism of copper fl otation tailings in sulfuric acid solution. Russ. J. Non-Ferrous Metals, 56(2), 127-133. DOI: 10.3103/ S1067821215020170.10.3103/S1067821215020170
  14. 14. Astuti, W., Hirajima, T., Sasaki, K., & Okibea, N. (2016). Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Miner. Eng., 85, 1-16. DOI: 10.1016/j. mineng.2015.10.001.10.1016/j.mineng.2015.10.001
  15. 15. Irannajad, M., Meshkini, M., & Azadmehr, A. R. (2013). Leaching of zinc from low grade oxide ore using organic acid. Physicochem. Probl. Miner. Pro., 49(2), 547-555. DOI: 10.5277/ppmp130215.10.5277/ppmp130215
  16. 16. Raza, N., Iqbal Zafar, Z., & Najam-ul-Haq (2013). An analytical model approach for the dissolution kinetics of magnesite ore using ascorbic acid as leaching agent. Int. J. Metals, Article ID 352496. DOI: 10.1155/2013/352496.10.1155/2013/352496
  17. 17. Dybczynski, R., Kulisa, K., Małusecka, M., Mandecka, M., Polkowska-Motrenko, H., Sterlinski, S., & Szopa, Z. (1990). A comprehensive study on the contents and leaching of trace elements from fl y-ash originating from Polish hard coal by NAA and AAS methods. Biol. Trace Elem. Res., 26(1), 335-345. DOI: 10.1007/BF02992688.10.1007/BF02992688
  18. 18. Zovko, E., & Pujić, Z. (1991). Application of neutron activation in the control of an ore disintegration process. J. Radioanal. Nucl. Chem., 154(6), 365-370. DOI: 10.1007/BF02169769.10.1007/BF02169769
  19. 19. Figueiredo, A. M. G., Avristcher, W., Masini, E. A., Diniz, S. C., & Abrão, A. (2002). Determination of lanthanides (La, Ce, Nd, Sm) and other elements in metallic gallium by instrumental neutron activation analysis. J. Alloy. Compd., 344(1/2), 36-39. DOI: 10.1016/S0925-8388(02)00301-8.10.1016/S0925-8388(02)00301-8
  20. 20. Vind, J., Alexandri, A., Vassiliadou, V., & Panias, D. (2018). Distribution of selected trace elements in the Bayer process. Metals, 8(5), 327(21 pp.). DOI: 10.3390/met8050327.10.3390/met8050327
  21. 21. Tsertsvadze, L. A., Dzadzamia, L. A., Petrashvili, Sh. G., Shutkerashvili, D. G., Kirkesali, E. I., Frontasyeva, M. V., Pavlov, S. S., & Gundorina, S. F. (2001). Development of the method of bacterial leaching of metals out of low-grade ores, rocks, and industrial wastes using neutron activation analysis. In K. Marinova, V. P. Perelygin, & P. Vater (Eds.), Radionuclides and heavy metals in environment (Vol. 5, pp. 245-257). (NATO Science Series, IV: Earth and Environmental Series). Dordrecht: Springer.10.1007/978-94-010-0993-5_35
  22. 22. Iller, E., & Thýn, J. (1994). Metody radioznacznikowe w praktyce przemysłowej. Warszawa: WNT.
  23. 23. Smoliński, T., Rogowski, M., Brykała, M., Pyszynska, M., & Chmielewski, A. G. (2018). Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching. Nukleonika, 63(4), 123-129. DOI: 10.2478/nuka-2018-0015.10.2478/nuka-2018-0015
  24. 24. Bujdoso, E., Feher, I., & Kardos, G. (1973). Activation and decay tables of radioisotopes. Amsterdam, New York: Elsevier.
  25. 25. Jaroszewicz, J., Marcinkowska, Z., & Pytel, K. (2014). Production of fi ssion product 99Mo using high-enriched uranium plates in Polish nuclear research reactor MARIA: Technology and neutronic analysis. Nukleonika, 59(2), 43-52. DOI: 10.2478/nuka-2014-0009.10.2478/nuka-2014-0009
  26. 26. Chmielewski, T. (2016). Hydrometalurgia w odzyskiwaniu metali z koncentratów KGHM. In 4 Konferencja międzynarodowa - Metale towarzyszące w przemyśle metali nieżelaznych pt. „Metale towarzyszące kluczem do efektywnego wykorzystania zasobów w gospodarce cyrkulacyjnej”, 15-17.06.2016. Wrocław, Poland.
  27. 27. Petryka, L., & Przewlocki, K. (1983). Radiotracer investigations of benefication copper ore in the industrial flotation process. Isotopenpraxis Isot. Environ. Health Stud., 19(10), 339-341. DOI: 10.1080/10256018308544932.10.1080/10256018308544932
DOI: https://doi.org/10.2478/nuka-2018-0016 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 131 - 137
Submitted on: Dec 2, 2017
Accepted on: Oct 15, 2018
Published on: Jan 18, 2019
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Marcin Rogowski, Tomasz Smoliński, Marta Pyszynska, Marcin Brykała, Andrzej G. Chmielewski, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.