Have a personal or library account? Click to login
Monte Carlo modelling of Th-Pb fuel assembly with californium neutron source Cover

Monte Carlo modelling of Th-Pb fuel assembly with californium neutron source

Open Access
|Nov 2018

References

  1. 1. International Atomic Energy Agency. (2012). Role of thorium to supplement fuel cycles of future nuclear energy systems. Vienna: IAEA. (Nuclear Energy Series No. NF-T-2.4).
  2. 2. Serfontein, D. E., & Mulder, E. J. (2014). Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk. Nucl. Eng. Des., 271, 106–113.10.1016/j.nucengdes.2013.11.018
  3. 3. Vijayan, P., Shivakumar, V., Basu, S., & Sinha, R. (2017). Role of thorium in the Indian nuclear power programme. Prog. Nucl. Energy, 101(Pt A), 43–52.10.1016/j.pnucene.2017.02.005
  4. 4. Abdel-Khalik, S. I., Haldy, P. A., & Kumar, A. (1984). Blanket design and calculated performance for the Lotus Fusion-Fission Hybrid Experimental Devices Test Facility. Fusion Sci. Technol., 2, 189–208.10.13182/FST84-A23093
  5. 5. Bhabha Atomic Research Centre. [access: 10.11.2017], www.barc.gov.in/randd/index.html.
  6. 6. Oettingen, M., Cetnar, J., & Mirowski, T. (2015). The MCB code for numerical modeling of fourth generation nuclear reactors. Computer Sci., 16(4), 329–350.10.7494/csci.2015.16.4.329
  7. 7. X-5 Monte Carlo Team. (2005). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5. LANL. (Report LA-UR-03-1987).
  8. 8. Cetnar, J. (2006). Solution of Bateman equations for nuclear transmutations. Ann. Nucl. Energy, 33, 640–645.10.1016/j.anucene.2006.02.004
  9. 9. McConn, R. J. Jr, Gesh, C. J., Pagh, R. T., Rucker, R. A., & Williams III, R. G. (2011). Radiation portal monitor project, compendium of material composition data for radiation transport modeling. Revision 1. Pacific Northwest National Laboratory. (PIET-43741-TM-963, PNNL-15870).10.2172/1023125
  10. 10. Morss, L. R., Edelstein, N. M., & Fuger, J. (2010). The chemistry of the actinide and transactinide elements (4th ed.). Dordrecht: Springer.10.1007/978-94-007-0211-0
  11. 11. ACK Cyfronet AGH. [access: 10.11.2017], KDM. www.cyfronet.krakow.pl/portal/Prometheus.
  12. 12. Martin, R. C., Knauer, J. B., & Balo, P. A. (2000). Production, distribution and applications of californium-252 neutron sources. Appl. Radiat. Isot., 53, 785–792.10.1016/S0969-8043(00)00214-1
  13. 13. Liu, Z., Yang, C., Yang, Y., Zheng, L., & Rong, L. (2018). Measurement and analysis of 232Th(n,2n)231Th reaction rate in the thorium oxide cylinder with a D-T neutron. Ann. Nucl. Energy, 111, 660–665.10.1016/j.anucene.2017.06.041
  14. 14. Mohapatra, D. K., Singh, S. S., Riyas, A., & Mohanakrishnan, P. (2013). Physics aspects of metal fuelled fast reactors with thorium blanket. Nucl. Eng. Des., 265, 1232–1237.10.1016/j.nucengdes.2013.09.002
  15. 15. Kooyman, T., & Buiron, L. (2016). Neutronic and fuel cycle comparison of uranium and thorium as matrix for minor actinides bearing-blankets. Ann. Nucl. Energy, 92, 61–71.10.1016/j.anucene.2016.01.020
DOI: https://doi.org/10.2478/nuka-2018-0011 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 87 - 91
Submitted on: Jan 2, 2018
Accepted on: Jul 16, 2018
Published on: Nov 2, 2018
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Mikołaj Oettingen, Przemysław Stanisz, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.