Have a personal or library account? Click to login
Simulation of start-up behaviour of a passive autocatalytic hydrogen recombiner Cover

Simulation of start-up behaviour of a passive autocatalytic hydrogen recombiner

By: Antoni Rożeń  
Open Access
|Jul 2018

References

  1. 1. International Atomic Energy Agency. (2011). Mitigation of hydrogen hazards in severe accidents in nuclear power plants. Vienna: IAEA. (IAEA-TECDOC-1661).
  2. 2. Rigas, F., & Amyotte, P. (2013). Hydrogen safety. New York: CRC Press, Taylor & Francis Group.10.1201/b12267
  3. 3. Kanzleiter, T. (2009). OECD-NEA THAI Project. Quick look report. Hydrogen recombiner tests HR-1 to HR-5, HR-27 and HR-28. Eschborn, Germany: Becker Technologies GmbH. (Report no. 150 1326-HR-QLR-1).
  4. 4. Areva Inc. (2011). Passive autocatalytic recombiner. Retrieved June 2017, from http://us.areva.com/EN/home-1495/passive-autocatalytic-recombiner-par.html.10.1155/2011/862812
  5. 5. Simon, B., Reinecke, E.-A., Kubelt, C., & Allelein, H.-J. (2014). Start-up behaviour of a passive auto-catalytic recombiner under counter flow conditions: Results of a first orienting experimental study. Nucl. Eng. Des., 278, 317–322. DOI: 10.1016/j.nucengdes.2014.06.029.10.1016/j.nucengdes.2014.06.029
  6. 6. Liang, Z., Gardner, L., Clouther, T., & Thomas, B. (2016). Experimental study of effect of ambient flow condition on the performance of a passive autocatalytic recombiner. Nucl. Eng. Des., 301, 49–58. DOI: 10.1016/j.nucengdes.2016.03.005.10.1016/j.nucengdes.2016.03.005
  7. 7. Bachellerie, E., Arnould, F., Auglaire, M., de Boeck, B., Braillard, O., Eckardt, B., Ferroni, F., & Moffet, R. (2003). Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des., 221, 151–165.10.1016/S0029-5493(02)00330-8
  8. 8. Blanchat, T. K., & Malliakos, A. (1999). Analysis of hydrogen depletion using a scaled passive autocatalytic recombiner. Nucl. Eng. Des., 187, 229–239.10.1016/S0029-5493(98)00283-0
  9. 9. Reinecke, E. -A., Tragsdorf, I. M., & Gierling, K. (2004). Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors. Nucl. Eng. Des., 230, 49–59. DOI: 10.1016/j.nucengdes.2003.10.009.10.1016/j.nucengdes.2003.10.009
  10. 10. Kelm, S., Schoppe, L., Dornseiffer, J., Hofmann, D., Reinecke, E.-A., Leistner, F., & Jühe, S. (2009). Ensuring the long-term functionality of passive auto-catalytic recombiners under operational containment atmosphere conditions – An interdisciplinary investigation. Nucl. Eng. Des., 239, 274–280. DOI: 10.1016/j.nucengdes.2008.10.029.10.1016/j.nucengdes.2008.10.029
  11. 11. Kanzleiter, T. (2009). OECD-NEA THAI Project. Quick look report. Hydrogen recombiner tests HR-14 to HR-16. Eschborn, Germany: Becker Technologies GmbH. (Report no. 150 1326-HR-QLR-4).
  12. 12. Orszulik, M., Fic, A., & Bury, T. (2015). CFD modeling of passive autocatalytic recombiners. Nukleonika, 60, 347–353. DOI: 10.1515/nuka-2015-0050.10.1515/nuka-2015-0050
  13. 13. Mimouni, S., Mechitoua, N., & Ouraou, M. (2011). CFD recombiner modelling and validation on the H2-PAR and Kali-H2 experiments. Sci. Technol. Nucl. Install., article ID 547514. DOI: 10.1155/2011/574514.10.1155/2011/574514
  14. 14. Hoyes, J. R., & Ivings, M. J. (2016). CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance. Nucl. Eng. Des., 310, 142–153. DOI: 10.1016/j.nucengdes.2016.08.036.10.1016/j.nucengdes.2016.08.036
  15. 15. Kelm, S., Jahn, W., Reinecke, E.-A., & Allelein, H.-J. (2012). Passive auto-catalytic recombiner operation – validation of a CFD approach against OECD-THAI HR2 test. In Proceedings of OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety, 9–13 September 2012. Deajon, South Korea.
  16. 16. Reinecke, E.-A., Kelm, S., Steffen, P.-M., Klauck, M., & Allelein, H.-J. (2016). Validation and application of the REKO-DIREKT code for the simulation of passive autocatalytic recombiners operational behaviour. Nucl. Technol., 196, 355–366. DOI: 10.13182/NT16-7.10.13182/NT16-7
  17. 17. Rożeń, A. (2015). Modelling of a passive autocatalytic hydrogen recombiner – a parametric study. Nukleonika, 60, 161–170. DOI: 10.1515/nuka-2015-0002.10.1515/nuka-2015-0002
  18. 18. Poling, B. E., Prausnitz, J. M., & O’Connell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill.
  19. 19. The European Stainless Steel Development Association. (2007). Stainless steel: Tables of technical properties. Materials and Application Series, 5. Luxemburg: Euro Inox.
  20. 20. Boehm, J. (2007). Modellierung der Prozesse in katalytischen Rekombinatoren. Schriften des Forschungszentrums Jülich, Reihe Energietechnik, Band 61.
  21. 21. Monarch Instrument. (2003). Table of emissivity. Retrieved June 2017, from https://monarchinstrument.com/pages/library.
  22. 22. Warnatz, J., Allendorf, M. D., Kee, R. J., & Coltrin, M. E. (1994). A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surfaces. Combust. Flame, 96, 393–406.10.1016/0010-2180(94)90107-4
  23. 23. Schefer, R. W., Cheng, R. K., Robben, F. A., & Brown, N. J. (1978). Catalyzed combustion of H2/air mixtures on a heated platinum plate. In The Western States Section/The Combustion Institute, Spring Meeting, 17–18 April 1978 (Paper No. 78–33). Boulder, CO, USA.
  24. 24. Idelchik, I. E. (2008). Handbook of hydraulic resistance. New York: Begell House, Inc.
  25. 25. Shah, R. K., & London, A. L. (1978). Laminar flow forced convection in ducts. In T. F. Irvine, J. P. Hartnett (Eds.), Advances in heat transfer. Suppl. 1. New York: Academic Press.10.1016/B978-0-12-020051-1.50006-1
  26. 26. Zhi-qing, W. (1982). Study on correction coefficients of laminar and turbulence entrance region effect in round pipe. Appl. Math. Mech., 3, 433–446.10.1007/BF01897224
  27. 27. ANSYS, Inc. (2016). ANSYS Fluent Theory Guide. Release 17.2. Canonsburg: ANSYS, Inc. Retrieved June 2017, from https://pl.scribd.com/document/342817281/ANSYS-Fluent-Theory-Guide.
  28. 28. Dimotakis, P. E. (2000). The mixing transition in turbulent flows. J. Fluid Mech., 409, 69–98.10.1017/S0022112099007946
DOI: https://doi.org/10.2478/nuka-2018-0004 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 27 - 41
Submitted on: Mar 8, 2018
|
Accepted on: May 25, 2018
|
Published on: Jul 31, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Antoni Rożeń, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.