Have a personal or library account? Click to login
Evaluation of circulating endothelial cells in the rat after acute and fractionated whole-body gamma irradiation Cover

Evaluation of circulating endothelial cells in the rat after acute and fractionated whole-body gamma irradiation

Open Access
|Dec 2014

References

  1. 1. Adams, M. J., Hardenbergh, P. H., Constine, L. S., & Lipshultz, S. E. (2003). Radiation-associated cardiovascular disease. Crit. Rev. Oncol. Hematol., 45(1), 55-75. DOI: http://dx.doi.org/10.1016/S1040-8428(01)00227-X.10.1016/S1040-8428(01)00227-X
  2. 2. Shimizu, Y., Kodama, K., Nishi, N., Kasagi, F., Suyama, A., Soda, M., Grant, E. J., Sugiyama, H., Sakata, R., Moriwaki, H., Hayashi, M., Konda, M., & Shore, R. E. (2010). Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ, 340, b5349. Retrieved January 14, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1136/bmj.b5349.10.1136/bmj.b5349280694020075151
  3. 3. Little, M. P., Gola, A., & Tzoulaki, I. (2009). A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput. Biol., 5(10), e1000539. Retrieved October 23, 2009, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1371/journal.pcbi.1000539.10.1371/journal.pcbi.1000539275907719851450
  4. 4. Halle, M., Gabrielsen, A., Paulsson-Berne, G., Gahm, C., Agardh, H. E., Farnebo, F., & Tornvall, P. (2010). Sustained inflammation due to nuclear factor-kappa b activation in irradiated human arteries. J. Am. Coll. Cardiol., 55(12), 1227-1236. DOI: 10.1016/j. jacc.2009.10.047.
  5. 5. Boerma, M., & Hauer-Jensen, M. (2011). Preclinical research into basic mechanisms of radiation- -induced heart disease. Cardiol. Res. Pract. Retrieved October 4, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.4061/2011/858262.10.4061/2011/858262295291520953374
  6. 6. Bentzen, S. M. (2006). Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer, 6(9), 702-713. DOI: 10.1038/nrc1950.10.1038/nrc195016929324
  7. 7. Sugihara, T., Hattori, Y., Yamamoto, Y., Qi, F., Ichikawa, R., Sato, A., Liu, M. Y., Abe, K., & Kanno, M. (1999). Preferential impairment of nitric oxide- -mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Circulation, 100(6), 635-641. DOI: 10.1161/01.CIR.100.6.635.10.1161/01.CIR.100.6.63510441101
  8. 8. On, Y. K., Kim, H. S., Kim, S. Y., Chae, I. H., Oh, B. H., Lee, M. M., Park, Y. B., Choi, Y. S., & Chung, M. H. (2001). Vitamin C prevents radiation-induced endothelium-dependent vasomotor dysfunction and de-endothelialization by inhibiting oxidative damage in the rat. Clin. Exp. Pharmacol. Physiol., 28(10), 816-821. DOI: 10.1046/j.1440-1681.2001.03528.x.10.1046/j.1440-1681.2001.03528.x11553021
  9. 9. Qi, F., Sugihara, T., Hattori, Y., Yamamoto, Y., Kanno, M., & Abe, K. (1998). Functional and morphological damage of endothelium in rabbit ear artery following irradiation with cobalt60. Br. J. Pharmacol., 123(4), 653-660. DOI: 10.1038/sj.bjp.0701654.10.1038/sj.bjp.070165415652129517384
  10. 10. Soloviev, A. I., Tishkin, S. M., Parshikov, A. V., Ivanova, I. V., Goncharov, E. V., & Gurney, A. M. (2003). Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation. Br. J. Pharmacol., 138(5), 837-844. DOI: 10.1038/ sj.bjp.0705079.10.1038/sj.bjp.0705079157371112642385
  11. 11. Robbins, M. E., Jaenke, R. S., Bywaters, T., Golding, S. J., Rezvani, M., Whitehouse, E., & Hopewell, J. W. (1993). Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat. Res., 135(3), 351-364.10.2307/3578875
  12. 12. Narayan, K., Withers, R., Garcia, C., Masoh, K., & Kumar, S. (1994). Guinea pig spinal cord as a model for the study of late radiation injury and repair. Int. J. Oncol., 4(4), 809-814. DOI: 10.3892/ijo.4.4.809.10.3892/ijo.4.4.809
  13. 13. Ward, H. E., Kemsley, L., Davies, L., Holecek, M., & Berend, N. (1993). The pulmonary response to sublethal thoracic irradiation in the rat. Radiat. Res., 136(1), 15-21.10.2307/3578634
  14. 14. Panes, J., Anderson, D. C., Miyasaka, M., & Granger, D. N. (1995). Role of leukocyte-endothelial cell adhesion in radiation induced microvascular dysfunction in rats. Gastroenterology, 108(6), 1761-1769.10.1016/0016-5085(95)90138-8
  15. 15. Kimura, H., Wu, N. Z., Dodge, R., Spencer, D. P., Klitzman, B. M., McIntyre, T. M., & Dewhirst, M. W. (1995). Inhibition of radiation-induced upregulation of leukocyte adhesion to endothelial cells with the platelet-activating factor inhibitor, BN52021. Int. J. Radiat. Oncol. Biol. Phys., 33(3), 627-633. DOI: http://dx.doi.org/10.1016/0360-3016(95)00205-D.10.1016/0360-3016(95)00205-D
  16. 16. Verheji, M., Dewit, L. G., Boomgaard, M. N., Brinkman, H. J., & Mourik, J. A. (1994). Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor. Radiat. Res., 137(2), 202-207.10.2307/3578813
  17. 17. Law, M. P. (1981). Radiation induced vascular injury and its relation to late effects in normal tissues. Adv. Radiat. Biol., 9, 37-73.10.1016/B978-0-12-035409-2.50007-2
  18. 18. Woywodt, A., Blann, A. D., Kirsch, T., Erdbruegger, U., Banzet, N., Haubitz, M., & Dignat-George, F. (2006). Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J. Thromb. Haemost., 4(3), 671-677. DOI: 10.1111/j.1538-7836.2006.01794.x.10.1111/j.1538-7836.2006.01794.x16460450
  19. 19. Goon, P. K., Lip, G. Y., Boos, C. J., Stonelake, P. S., & Blann, A. D. (2006). Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia, 8(2), 79-88. DOI: 10.1593/neo.05592.10.1593/neo.05592157851316611400
  20. 20. Mancuso, P., Peccatori, F., Rocca, A., Calleri, A., Antoniotti, P., Rabascio, C., Saronni, L., Zorzino, L., Sandri, M. T., Zubani, A., & Bertolini, F. (2008). Circulating endothelial cell number and viability are reduced by exposure to high altitude. Endothelium, 15(1), 53-58. DOI: 10.1080/10623320802092344.10.1080/1062332080209234418568945
  21. 21. Woywodt, A., Scheer, J., Hambach, L., Buchholz, S., Ganser, A., Haller, H., Hertenstein, B., & Haubitz, M. (2004). Circulating endothelial cells as a marker of endothelial damage in allogenic hematopoietic stem cell transplantation. Blood, 103(9), 3603-3605. DOI: 10.1182/blood-2003-10-3479.10.1182/blood-2003-10-347914715625
  22. 22. Zeng, L., Yan, Z., Wang, L., Du, B., Pan, X., & Xu, K. (2008). Irradiation is an early determinant of endothelial injury during hematopoietic stem cell transplantation. Transplant. Proc., 40(8), 2661-2664. DOI: 10.1016/j.transproceed.2008.08.062.10.1016/j.transproceed.2008.08.062
  23. 23. Al-Massarani, G., & Najjar, F. (2013). Does occupational exposure to low ionizing radiation affect endothelium health? Nukleonika, 58(4), 527-531.
  24. 24. Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., Haubitz, M., Hebbel, R. P., Lip, G. Y., Mancuso, P., Sampol, J., Solovey, A., & Dignat-George, F. (2005). Circulating endothelial cells. Biomarker of vascular disease. Thromb. Haemost., 93(2), 228-235. DOI: http:/dx.doi.org/10.1160/TH04-09-0578.
  25. 25. Menendez, J. C., Casanova, D., Amado, J. A., Salas, E., García-Unzueta, M. T., Fernandez, F., de la Lastra, L. P., & Berrazueta, J. R. (1998). Effects of radiation on endothelial function. Int. J. Radiat. Oncol. Biol. Phys., 41(4), 905-913. DOI: http://dx.doi.10.1016/S0360-3016(98)00112-6.10.1016/S0360-3016(98)00112-6
  26. 26. Burger, D., & Touyz, R. M. (2012). Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J. Am. Soc. Hypertens., 6(2), 85-99. DOI: 10.1016/j. jash.2011.11.003.
  27. 27. Erdbruegger, U., Haubitz, M., & Woywodt, A. (2006). Circulating endothelial cells: A novel marker of endothelial damage. Clin. Chim. Acta, 373(1/2), 17-26.10.1016/j.cca.2006.05.016
  28. 28. Garbuzova-Davis, S., Woods III, R. L., Louis, M. K., Zesiewicz, T. A., Kuzmin-Nichols, N., Sullivan, K. L., Miller, A. M., Hernandez-Ontiveros, D. G., & Sanberg, P. R. (2010). Reduction of circulating endothelial cells in peripheral blood of ALS patients. Plos ONE. 5(5), e10614. Retrieved May 12, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1371/journal.pone.0010614.10.1371/journal.pone.0010614
  29. 29. Barres, B. A., Hart, I. K., Coles, H. S., Burne, J. F., Voyvodic, J. T., Richardson, W. D., & Raff, M. C. (1992). Cell death and the control of survival in the oligodendrocyte lineage. Cell, 70(1), 31-46.10.1016/0092-8674(92)90531-G
  30. 30. Wang, J., Kumar, S., van Agthoven, A., Kumar, P., Pye, D., & Hunter, R. D. (1995). Irradiation induces upregulation of E9 protein (CD105) in human vascular endothelial cells. Int. J. Cancer, 62(6), 791-796. DOI: 10.1002/ijc.2910620624.10.1002/ijc.29106206247558432
  31. 31. Hirst, D. G., Denekamp, J., & Hobson, B. (1980). Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation. Cell Tissue Kinet., 13(1), 91-104.10.1111/j.1365-2184.1980.tb00452.x7371061
  32. 32. Delorme, B., Basire, A., Gentile, C., Sabatier, F., Monsonies, F., Desouches, C., Blot-Chabaud, M., Uzan, G., Sampol, J., & Dignat-George, F. (2005). Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells.Thromb. Haemost., 94(6), 1270-1279. DOI: http://dx.doi.org/10.1160/TH05-07-0499.10.1160/TH05-07-049916411405
  33. 33. Pena, L. A., Fuks, Z., & Kolesnick, R. N. (2000). Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res., 60(2), 321-327.
  34. 34. Li, Y., Chen, P., Haimovitz-Friedman, A., Reilly, R. M., & Wong, C. S. (2003). Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res., 63(18), 5950-5956.
  35. 35. Bonnaud, S., Niaudet, C., Pottier, G., Gaugler, M. H., Millour, J., Barbet, J., Sabatier, L., & Paris, F. (2007). Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Res., 67(4), 1803-1811. DOI: 10.1158/0008-5472. CAN-06-2802.
  36. 36. Khodarev, N. N., Kataoka, Y., Murley, J. S., Weichselbaum, R. R., & Grdina, D. J. (2004). Interaction of amifostine and ionizing radiation on transcriptional patterns of apoptotic genes expressed in human microvascular endothelial cells (HMEC). Int. J. Radiat. Oncol. Biol. Phys., 60(2), 553-563. DOI: http://dx.doi.org/10.1016/j.ijrobp.2004.04.060.10.1016/j.ijrobp.2004.04.06015380592
  37. 37. Nübel, T., Damrot, J., Roos, W. P., Kaina, B., & Fritz, G. (2006). Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin. Cancer Res., 1(12), 933-939. DOI: 10.1158/1078-0432.CCR-05-1903.10.1158/1078-0432.CCR-05-190316467108
  38. 38. Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon- -Cardo, C., Schuchman, E. H., Fuks, Z., & Kolesnick, R. (1996). Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation- -induced apoptosis. Cell, 86(2), 189-199. DOI: http://dx.doi.org/10.1016/S0092-8674(00)80091-4.10.1016/S0092-8674(00)80091-4
  39. 39. Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimovitz-Friedman, A., Cordon-Cardo, C., & Kolesnick, R. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293-297. DOI:10.1126/science.1060191.10.1126/science.1060191
  40. 40. Marathe, S., Schissel, S. L., Yellin, M. J., Beatini, N., Mintzer, R., Williams, K. J., & Tabas, I. (1998). Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide mediated cell signaling. J. Biol. Chem., 273(7), 4081-4088. DOI: 10.1074/jbc.273.7.4081.10.1074/jbc.273.7.4081
  41. 41. Farjado, L. F., Brown, J. M., & Glastein, E. (1976). Glomerular and juxtaglomerular lesions in radiation nephropathy. Radiat. Res., 68(1), 177-183. DOI: 10.2307/3574547.10.2307/3574547
  42. 42. Baker, D. G., & Krochak, R. J. (1989). The response of the microvascular system to radiation: a review. Cancer Invest., 7(3), 287-294.10.3109/07357908909039849
  43. 43. Eissner, G., Kohlhuber, F., Grell, M., Ueffing, M., Scheurich, P., Hieke, A., Multhoff, G., Bornkamm, G. W., & Holler, E. (1995). Critical involvement of transmembrane tumor necrosis factor-alpha in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood, 86(11), 4184-4193.10.1182/blood.V86.11.4184.bloodjournal86114184
  44. 44. Langley, R. E., Bump, E. A., Quartuccio, S. G., Medeiros, D., & Braunhut S. J. (1997). Radiation- -induced apoptosis in microvascular endothelial cells. Br. J. Cancer, 75(5), 666-672. DOI:10.1038/ bjc.1997.119.10.1038/bjc.1997.119
  45. 45. Salovsky, P. T., & Shopova, V. L. (1992). Early biological effects of whole body irradiation on rat lungs. Radiat. Environ. Biophys., 31(4), 333-341. DOI: 10.1007/BF01210213.10.1007/BF01210213
  46. 46. Savla, U., & Waters, C. M. (1998). Barrier function of airway epithelium: effects of radiation and protection by keratinocyte growth factor. Radiat. Res., 150(2), 195-203.10.2307/3579855
  47. 47. Klein-Soyer, C., Beretz, A., Cazenave, J. P., Driot, F., & Maffrand, J. P. (1990). Behavior of confluent endothelial cells after irradiation. Modulation of wound repair by heparin and acidic fibroblast growth factor. Biol. Cell., 68(1/3), 231-238. DOI: 10.1016/0248-4900(90)90313-R.10.1016/0248-4900(90)90313-R
  48. 48. Zhou, M., Dong, Q., & Ts’ao, C. (1988). Susceptibility of irradiated bovine aortic endothelial cells to injury. Am. J. Pathol., 133(2), 277-284.
  49. 49. Luckey, T. D. (2008). The health effects of low-dose ionizing radiation. J. Am. Phys. Surg., 13(2), 39-42.
  50. 50. Suzuki, K., & Yamashita, S. (2012). Low-dose radiation exposure and carcinogenesis. Jpn. J. Clin. Oncol., 42(7), 563-568. DOI: 10.1093/jjco/hys078.10.1093/jjco/hys07822641644
  51. 51. Ahmad, M., Khurana, N. R., & Jaberi, J. E. (2007). Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc. Res., 73(1), 14-19. DOI: 10.1016/j.mvr.2006.08.005.10.1016/j.mvr.2006.08.00517028041
  52. 52. Salloum, R. M., Jaskowiak, N. T., Mauceri, H. J., Seetharam, S., Beckett, M. A., Koons, A. M., Hari, D. M., Gupta, V. K., Reimer, C., Kalluri, R., Posner, M. C., Hellman, S., Kufe, D. W., & Weichselbaum, R. R. (2000). NM-3, an isocoumarin, increases the antitumor effects of radiotherapy without toxicity. Cancer Res., 60(24), 6958-6963.
  53. 53. Abdollahi, A., Lipson, K. E., Weber, K. J., Hahnfeldt, P., Hlatky, L., Debus, J., Howlett, A. R., & Huber, P. (2003). SU5416 and SU6668 decrease angiogenic effects of radiation-induced factor productions by tumour cells and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res., 63(13), 3755-3763.
  54. 54. Krum, J. M., Kenyon, K. L., & Rosenstein, J. M. (1997). Expression of blood-brain barrier characteristics following neuronal loss and astroglial damage after administration of anti-Thy-1 immunotoxin. Exp. Neurol., 146(1), 33-45. 10.1006/exnr.1997.65289225736
DOI: https://doi.org/10.2478/nuka-2014-0021 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 145 - 151
Submitted on: Jun 3, 2014
Accepted on: Sep 25, 2014
Published on: Dec 30, 2014
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Ghassan Al-Massarani, Khaled Almohamad, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.