Have a personal or library account? Click to login
Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation Cover

Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

Open Access
|Mar 2014

References

  1. 1. Martin, M. J., Pablos, F., & Gonzalez, A. G. (1998).Discrimination between arabica and robusta green coffee varieties according to their chemical composition.Talanta, 46, 1259-1264.10.1016/S0039-9140(97)00409-8
  2. 2. Silvarolla, M. B., Mazzafera, P., & de Lina, M. M. A. (2000). Caffeine content of Ethiopian Caffea Arabica beans. Genet. Mol. Biol., 23, 213-218.10.1590/S1415-47572000000100036
  3. 3. Barber, L. B., Leenheer, J. A., Pereira, W. E., Noyes, T.L., Brown, G. K., Tabor, C. F., & Writer, J. H. (1995).Organic compounds and sewage-derived contaminants.In R. H. Meade (Ed.) Contaminants in the Mississippi River 1987-1992 (pp. 115-135). US Geological Survey Circular 1133. Virginia.
  4. 4. Paxeus, N., & Schröder, H. F. (1996). Screening for nonregulated organic compounds in municipal wastewater in Göteborg, Sweden. Water Sci. Technol., 33, 9-15.10.2166/wst.1996.0076
  5. 5. Seiler, R. L., Zaugg, S. D., Thomas, J. M., Howard, D.L. (1999). Caffeine and pharmaceuticals as indicators of wastewater contamination in wells. Ground Water, 37, 405-410.10.1111/j.1745-6584.1999.tb01118.x
  6. 6. Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem.Eng. J., 6, 153-162.10.1016/S1369-703X(00)00084-X
  7. 7. Rojas, J. B. U., Verreth, J. A. J., Amato, S., & Huisman, E.S. (2003). Biological treatments affect the chemical composition of coffee pulp. Bioresour. Technol., 89, 267-274.10.1016/S0960-8524(03)00070-1
  8. 8. Landolt, H. P., Dijk, D. J., Gauss, S. E., & Borbely, A.A. (1995). Caffeine reduces low-frequency delta activity in the human sleep EEG. Neuropsychopharmacology, 12, 229-238.10.1016/0893-133X(94)00079-F
  9. 9. Shilo, L., Sabbah, H., Hadari, R., Kovatz, S., Weinberg, U., Dolev, S., Dagan, Y., & Shenkman, L. (2002). The effects of coffee consumption on sleep and melatonin sectretion.Sleep Med., 3, 271-273.10.1016/S1389-9457(02)00015-1
  10. 10. Gokulakrishnan, S., Chandraraj, K., Sathyanarayana, N., & Gummadi, N. (2005). Microbial and enzymatic methods for the removal of caffeine. Enzyme Microb. Technol., 37, 225-232.10.1016/j.enzmictec.2005.03.004
  11. 11. Udayasankar, K., Raghavan, C. V., Rao, P. N. S., Rao, K.L., Kuppuswamy, S., & Ramanathan, P. K. (1983). Studies on the extraction of caffeine from coffee beans. J. Food Sci. Technol.-Mysore, 20, 64-67.
  12. 12. Cesaro, A., Rosso, E., & Crescenzl, V. (1976). Thermodynamics of caffeine. J. Phys. Chem., 80(3), 335-339.10.1021/j100544a026
  13. 13. Gehringer, P., Proksch, E., Eschweiler, H., & Szinovatz, W. (1992). Remediation of groundwater polluted with chlorinated ethylenes by ozone-electron beam irradiation treatment. Appl. Radiat. Isot., 43(9), 1107-1115.10.1016/0883-2889(92)90052-G
  14. 14. Getoff, N. (1996). Radiation induced degradation of water pollutants-state of the art. Radiat. Phys. Chem., 47(4), 581-593.10.1016/0969-806X(95)00059-7
  15. 15. Lichtscheidl, J., & Getoff, N. (1976). Radiolysis of halogenated aromatic compounds in aqueous solutions-I conductometric pulse radiolysis and steady-state studies of the reaction of eaq -. Int. J. Radiat. Phys. Chem., 8(6), 661-665.10.1016/0020-7055(76)90037-1
  16. 16. Lin, K., Cooper, W. J., Nickelsen, M. G., Kurucz, C. N., & Waite, T. D. (1995). Decomposition of aqueous solutions of phenol using high energy electron beam irradiation. A large scale study. Appl. Radiat. Isot., 46(12), 1307-1316.10.1016/0969-8043(95)00236-7
  17. 17. Wang, T., Waite, T. D., Kurucz, C., & Cooper, W. J. (1994).Oxidant reduction and biodegradability improvement of paper mill effluent by irradiation. Water Res., 28(1), 237-241.10.1016/0043-1354(94)90139-2
  18. 18. Getoff, N. (1989). Advancements of radiation induced degradation of pollutatnts in drinking and waste water.Appl. Radiat. Isot., 40(7), 585-594.10.1016/0883-2889(89)90114-7
  19. 19. Glaze, W. H., Weinberg, H. S., Krasner, S. W., & Sclimenti, M. J. (1991) Trends in aldehyde formation and removal through plants using ozonation and biological active filters. In Proceedings of the Conference AWWAAC- -Water Quality for the New Decade, 22-27 June 1991 (pp. 913-943). Philadelphia.
  20. 20. Getoff, N. (1997). Peroxyl radicals in the treatment of waste solutions. In Z. B. Alfassi (Ed.), Peroxyl radicals. (pp. 173-234). Chichester: Wiley.
  21. 21. Hoigné, J., & Bader, H. (1983). Rate constants of reaction of ozone with organic and inorganic compounds in water-I non-dissociating organic compounds. Water Res., 17(12), 173-183.10.1016/0043-1354(83)90098-2
  22. 22. Rice, R. (1996). Applications of ozone for industrial wastewater treatment. A review. Ozone-Sci. Eng., 18(6), 477-515.10.1080/01919512.1997.10382859
  23. 23. Yao, C. C. D., & Haag, W. R. (1991). Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res., 25(7), 761-773.10.1016/0043-1354(91)90155-J
  24. 24. Hart, E. J., Sehested, K., Bjergbakke, E., & Holcman, J. (1987). Gamma-ray initiated decomposition of aqueous ozone solution. Radiat. Phys. Chem., 29, 399-403.10.1016/1359-0197(87)90013-0
  25. 25. Hoigné, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In The Handbook of Environmental Chemistry (Vol. 5, Part C, pp. 83-141). Berlin: Springer.
  26. 26. Sehested, K., Holcman, J., & Hart, E. J. (1983). Rate constants and products of the reactions of e- aq, O2 ·-, and H with ozone in aqueous solutions. J. Phys. Chem., 87, 1951-1954.10.1021/j100234a024
  27. 27. Moore, M. T., Greenway, S. L., Farris, J. L., & Guerra, B. (2008). Assessing caffeine as an emerging environmental concern using conventional approaches. Arch. Environ.Contam. Toxicol., 54, 31-35.10.1007/s00244-007-9059-4
  28. 28. Nash, T. (1973). The colorometric estimation of formaldehyde by means of the Hantzsch method. J. Biochem., 55, 416-421.10.1042/bj0550416
  29. 29. American Public Health Association. (1997). Standard methods for the examination of water and wastewater. 5220B Chemical oxygen demand open reflux method. (20th ed.). Washington DC.
  30. 30. Christensen, H., Sehested, K., & Løgager, T. (1994). Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2. Radiat. Phys.Chem., 43, 527-531.10.1016/0969-806X(94)90163-5
  31. 31. Sanchez, M., Wolfger, H., & Getoff, N. (2002). Radiation- -induced degradation of 4-chloroaniline in aqueous solution.Radiat. Phys. Chem., 65(6), 611-620.10.1016/S0969-806X(02)00213-X
  32. 32. Anbar, M., Farhataziz, & Ross, A. B. (1975). Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom. (National Standard Reference Data Series). Washington: US National Bureau of Standards.10.2172/4211292
  33. 33. Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms, hydroxyl radicals in aqueous solutions. J. Phys. Chem. Ref. Data, 17, 533-538.10.1063/1.555805
  34. 34. Anbar, M., Bambenek, M., & Ross, A. B. (1973). Selected specific rates of reactions of transients from water in aqueous solution. I. Hydrated electron. (National Standard Reference Data Series. NSRDS-NBS 43). Washington: US National Bureau of Standards.10.2172/4445489
  35. 35. Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O2 - radicals in aqueous solution.J. Phys. Chem. Ref. Data, 14(4), 1041-1100.10.1063/1.555739
  36. 36. Getoff, N., & Prucha, M. Z. (1983). Spectroscopic and kinetic characteristics of HO2 and O2 - species studied by pulse radiolysis. Naturforscher., 3, 589-590.10.1515/zna-1983-0520
  37. 37. Bielski, B. H. J., & Cabelli, D. E. (1991). Review: highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int. J. Radiat.Biol., 59, 291-319.10.1080/09553009114550301
  38. 38. Cabelli, D. E. (1997). The reactions of HO2 ·/O2 ·- radicals in aqueous solutions. In Z. B. Alfassi (Ed.), Peroxyl radicals. (pp. 407-437). Chichester: Wiley.
  39. 39. Belay, A., Ture, K., Redi, M., & Asfaw, A. (2008). Measurement of caffeine in coffee beans with UV/vis spectrometer.Food Chem., 108, 310-315.10.1016/j.foodchem.2007.10.024
  40. 40. Bühler, R. E., Staehelin, J., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1.HO2/O2 - and HO3/O3 - as intermediates. J. Phys. Chem., 88, 2560-2564.10.1021/j150656a026
  41. 41. Steahelin, J., Bühler, R. E., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis 2.OH and HO4 as chain intermediates. J. Phys. Chem., 88, 5999-6004.10.1021/j150668a051
  42. 42. Tomiyasu, H., Fukutomi, H., & Gordon, G. (1985). Kinetics and mechanism of ozone decomposition by basic aqueous solution. Inorg. Chem., 24, 2962-2966.10.1021/ic00213a018
  43. 43. Liguori, A., Mascaro, P., Porcelli, B., Sindona, G., & Uccella, N. (1991). Identification of caffeine and its metabolites in human urine extracts by electron impact ionization tandem mass spectrometry. J. Mass Spectrom., 26(6), 608-612.10.1002/oms.1210260613
  44. 44. Shi, X., & Dalal, N. S. (1991). Antioxidant behaviour of caffeine: efficient scavengers of hydroxyl radicals. Food Chem. Toxicol., 29(1), 1-6.10.1016/0278-6915(91)90056-D
  45. 45. Stadler, R. H., Richoz, J., Turesky, R. J., Wielti, D. H., & Fay, L. B. (1996). Oxidation of caffeine and related methylxanthines in ascorbate and polyphenol-driven Fenton-type oxidations. Free Radic. Res., 24(3), 225-240.10.3109/107157696090880208728124
  46. 46. Telo, J. P., Vieira, & A. J. S. C. (1997). Mechanism of free radical oxidation of caffeine in aqueous solution. J. Chem.Soc. Perkin Trans. 2, 9, 1755-1757.10.1039/a700944e
  47. 47. Kolonko, K. J., Shapiro, R. H., Barkley, R. M., & Sievers, R. E. (1979). Ozonation of caffeine in aqueous solution.J. Org. Chem., 44(22), 3769-3778.10.1021/jo01336a007
  48. 48. Dalmazio, I., Santos, L. S., Lopes, R. P., Eberlin, M. N., & Augusti, R. (2005). Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray mass spectrometry. Environ. Sci. Technol., 39, 5982-5988.10.1021/es047985v
  49. 49. Torun, M., Şolpan, D., & Güven, O. (2011). Treatment of water contaminated with chlorinated organic herbicide 2,4-D by an ozone/gamma process. Ozone-Sci. Eng., 33(1), 50-65.10.1080/01919512.2011.536743
  50. 50. Yang, M., Uesugi, K., & Myoga, H. (1999). Ammonia removal in bubble column by ozonation in the presence of bromide. Water Res., 33(8), 1911-1917.10.1016/S0043-1354(98)00364-9
  51. 51. Bauman, F. J. (1974). Dichromate reflux chemical oxygen demand, a proposed method for chloride correction in highly saline wastes. Anal. Chem., 46, 1336-1338.10.1021/ac60345a039
  52. 52. Kim, B. R. (1989). Effect of ammonia on COD analysis.Journal of the Water Pollution Control Federation, 61(5), 614-617.
  53. 53. Lee, E., Lee, H., Kim, Y. K., Sohn, K., & Lee, K. (2011).Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int. J. Environ.Sci. Technol., 8(2), 381-388.10.1007/BF03326225
  54. 54. Kang, Y. W., Cho, M. J., & Hwang, K. Y. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res., 33(5), 1247-1251.10.1016/S0043-1354(98)00315-7
  55. 55. Zak, S. (2008). Problem of correction of the chemical oxygen demand values determined in wastewaters treated by methods with hydrogen peroxide. Proceedings of ECOpole, 2(2), 409-414.
  56. 56. Pala, A., & Erden, G. (2005). Decolorization of a baker’s yeast industry effluent by Fenton oxidation. J. Hazard.Mater., B127, 141-148.10.1016/j.jhazmat.2005.06.03316122871
  57. 57. Martinez, N. S. S., Fernandez, J. F., Segura, X. F., & Ferrer, A. S. (2003). Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent. J. Hazard.Mater., B101, 315-322.
DOI: https://doi.org/10.2478/nuka-2014-0004 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 25 - 35
Published on: Mar 25, 2014
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Murat Torun, Dinara Abbasova, Dilek Şolpan, Olgun Güven, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons License.