Have a personal or library account? Click to login
Monte Carlo calculated CT numbers for improved heavy ion treatment planning Cover

Monte Carlo calculated CT numbers for improved heavy ion treatment planning

Open Access
|Mar 2014

References

  1. 1. Mustafa, A. A., & Jackson, D. F. (1983). The relation between X-ray CT numbers and charged particle stopping powers and its significance for radiotherapy treatment planning. Phys. Med. Biol., 28, 169-176.10.1088/0031-9155/28/2/0066408654
  2. 2. Verhaegen, F., & Devic, S. (2005). Sensitivity study for CT images in Monte Carlo treatment planning. Phys. Med.Biol., 50, 937-946.10.1088/0031-9155/50/5/01615798266
  3. 3. Homolka, P., Gahleitner, A., & Nowotny, R. (2002).Temperature dependence of HU values for various water equivalent phantom materials. Phys. Med. Biol., 47, 2917-2923.10.1088/0031-9155/47/16/30712222855
  4. 4. Bhat, M., Pattison, J., Bibbo, G., & Caon, M. (1998).Diagnostic X-ray spectra: a comparison of spectra generated by different computational methods with a measured spectrum. Med. Phys., 25, 114-120.10.1118/1.5981709472833
  5. 5. Caon, M., Bibbo, G., Pattison, J., & Bhat, M. (1998). The effect on dose to computed tomography phantoms of varying the theoretical X-ray spectrum: a comparison of four diagnostic spectrum calculating codes. Med. Phys., 25, 1021-1027.10.1118/1.5982819650192
  6. 6. Ay, M. R., Sarkar, S., Shahriari, M., & Zaidi, H. (2005).Assessment of different computational models for generation of X-ray spectra in diagnostic radiology and mammography. Med. Phys., 32, 1660-1675.10.1118/1.190612616013725
  7. 7. Ay, M. R., Shahriari, M., Sarkar, S., & Zaidi, H. (2004).Monte Carlo simulation of X-ray spectra in diagnostic radiology and mammography using MCNP4C. Phys. Med.Biol., 49, 4897-4917.10.1088/0031-9155/49/21/00415584526
  8. 8. Atherton, J. V., & Huda, W. (1995). CT dose in cylindrical phantoms. Phys. Med. Biol., 40, 891-911.10.1088/0031-9155/40/5/0127652014
  9. 9. Jarry, G., DeMacro, J. J., Beifuss, U., & Cagnon, C. H. (2003). A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient- -specific models. Phys. Med. Biol., 48, 2645-2663.10.1088/0031-9155/48/16/30612974580
  10. 10. Salvado, M., Lopez, M., Morant, J. J., & Calzado, A. (2005). Monte Carlo calculations of radiation dose in CT examination using phantom and patient tomographic models. Radiat. Prot. Dosim., 114, 364-368.10.1093/rpd/nch51615933138
  11. 11. Tzedakis, A., & Perisnakis, K. (2006). The effect of Z overscanning on radiation burden of pediatric patients undergoing head CT with multidetector scanners: A Monte Carlo study. Med. Phys., 33(7), 2472-2478.10.1118/1.220721216898450
  12. 12. Wysocka-Rabin, A., Qamhiyeh, S., & Jäkel, O. (2011).Simulation of computed tomography (CT) images using a Monte Carlo approach. Nukleonika, 56(4), 299-304.
  13. 13. Heismann, B. J., Leppert, J., & Stierstorfer, K. (2003).Density and atomic number measurements with spectral X-ray attenuation method. J. Appl. Phys., 94, 2073-2079.10.1063/1.1586963
  14. 14. Gammex-RMI. (2004). Electron density CT phantom.Catalogue. Retrieved from http://www.gammex.com/ace-files/Gammex_Catalog.pdf.
  15. 15. Jäkel, O., Jacob, C., Schardt, D., Karger, C., & Hartmann, G. H. (2001). Relation between carbon ion ranges and X-ray CT numbers. Med. Phys., 28(4), 701-703.10.1118/1.135745511339768
  16. 16. Kawrakow, I. (2000). Accurate condensed history Monte Carlo simulation of electron transport. EGSnrc, the new EGS4 version. Med. Phys., 27, 485-498.10.1118/1.59891710757601
  17. 17. Kawrakow, I., & Rogers, D. W. O. (2003). The EGSnrc cod system: Monte Carlo simulation of electron and photon transports. Ottawa: National Research Council of Canada. (PRIS-701).
  18. 18. Rogers, D. W. O., Ma, C. M., Walters, B., Ding, G. X., Sheikh-Bagheri, D., & Zhang, G. (2001). BEAMnrc Users manual. Ottawa: National Research Council of Canada. (PRIS-0509(A) rev. G).
  19. 19. Verhaegen, F. (2002). Evaluation of the EGSnrc Monte Carlo code for interference near high-Z media exposed to kilovolt and 60Co photons. Phys. Med. Biol., 47, 1691-1705.10.1088/0031-9155/47/10/30612069087
  20. 20. Verhaegen, F., Nahum, A. E., Van de Putte, S., & Namito, Y. (1999). Monte Carlo modelling of radiotherapy kV X-ray units. Phys. Med. Biol., 44, 1767-1789.10.1088/0031-9155/44/7/31510442712
  21. 21. Romanchikova, M. (2006). Monte Carlo Simulation des Röntgenspektrums einer computertomographischen Röntgenröhre. Unpublished Master’s thesis, University of Heidelberg, Germany.
  22. 22. Qamhiyeh, S. (2007). A Monte Carlo study of the accuracy of CT numbers for range calculations in Carbon ion therapy. Unpublished PhD thesis, University of Heidelberg, Germany.
  23. 23. Kachelrieß, M., & Kalender, W. (2005). Improving PET/ CT attenuation correction with iterative CT beam hardening corrections. In 2005 IEEE Nuclear Science Symposium Conference Record, 23-29 October 2005. (Vol. 4).IEEE. DOI: 10.1109/NSSMIC.2005.1596704.10.1109/NSSMIC.2005.1596704
  24. 24. Kachelrieß, M., Sourbelle, K., & Kalender, W. (2006). Empirical cupping corrections: a first-order raw data precorrection for cone beam computed tomography. Phys. Med.Biol., 33, 1269-1274.10.1118/1.218807616752561
  25. 25. Sennst, D. A., Kachelriess, M., Leidercker, C., Schmidt, B., Watzke, O., & Kalender, W. A. (2004). An extensible software-based platform for reconstruction and evaluation of CT images. Radiographics, 24(2), 601-613.10.1148/rg.24203511915026605
  26. 26. Ay, M. R., & Zaidi, H. (2005). Development and validation of MCNP4C-based Monte Carlo simulator for fan and cone beam X-ray CT. Phys. Med. Biol., 50, 4863-3885.10.1088/0031-9155/50/20/00916204878
  27. 27. Qamhiyeh, S., Wysocka-Rabin, A., Ellerbrock, M., & Jäkel, O. (2007). Effect of voltage of CT scanner, phantom size and phantom material on CT calibration and carbon range.Radiother. Oncol., 84(S1), S232.
  28. 28. Bazalova, M., Carrier, J. F., Beaulieu, L., & Verhaegen, F. (2008). Tissue segmentation in Monte Carlo treatment planning: a simulation study using dual-energy CT images.Radiother. Oncol., 86(1), 93-98.10.1016/j.radonc.2007.11.00818068841
  29. 29. Hünemohr, N., Krauss, B., Dinkel, J., Gillmann, C., Ackermann, B., Jäkel, O., & Greilich, S. (2013). Ion range estimation by using dual energy computed tomography. Z. Med. Phys., 23(4), 300-313.10.1016/j.zemedi.2013.03.00123597413
  30. 30. Wysocka-Rabin, A. (2013) Advances in conformal radiotherapy using Monte Carlo Code to design new IMRT and IORT Accelerators and interpret CT numbers. (CERN- -WUT Editorial series on “Accelerator Science”. Vol. 17). Warsaw: Institute of Electronic Systems, Warsaw University of Technology.
DOI: https://doi.org/10.2478/nuka-2014-0002 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 15 - 23
Published on: Mar 25, 2014
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Sima Qamhiyeh, Anna Wysocka-Rabin, Oliver Jäkel, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons License.