Alvarez-Lozano, J., Osmani, V., Mayora, O. et al. (2014). Tell me your apps and I will tell you your mood. In Conference on pervasive technologies related to assistive environments (PETRA’14) (pp. 1–7). Island of Rhodes: ACM Press.
Bayot, R. K. & Gon, T. (2017). Age and gender classification of tweets using convolutional neural networks. In Machine learning, optimization, and big data (MOD 2017) (pp. 337–348). Volterra: Springer.
Bi, B., Shokouhi, M., Kosinski, M. & Graepel, T. (2013). Inferring the demographics of search users: Social data meets search queries. In Conference on World Wide Web (WWW’13) (pp. 131–140) Rio de Janeiro: ACM Press.
Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Neural information processing systems (NIPS’16). Barcelona. Retrieved from https://www.semanticscholar.org/paper/Man-is-to-Computer-Programmer-as-Woman-is-to-Word-Bolukbasi-Chang/274459c52103f9b7880d0697aa28755ac3366987
Bonchi, F., Hajian, S., Mishra, B. & Ramazzotti, D. (2017). Exposing the probabilistic causal structure of discrimination. International Journal of Data Science and Analytics, 3: 1–21.
Böhmer, M., Hecht, B., Schöning J.J., Krüger, A., & Bauer, G. (2011). Falling asleep with Angry Birds, Facebook and Kindle: A large scale study on mobile application usage. In Human–computer interaction with mobile devices and services (MobileHCI’11) (pp. 47–56). Stockholm: ACM Press.
Calasanti, T. & King, N. (2015). Intersectionality and age. In J. Twigg & W. Martin (eds.), Routledge handbook of cultural gerontology (pp. 193–200). London: Routledge/Taylor and Francis.
Castells, M., Fernández-Ardèvol, M., Linchuan Qiu, J. & Sey, A. (2006). Mobile communication and society: A global perspective. Cambridge, MA: The MIT Press.
Choudrie, J. & Vyas, A. (2014). Silver surfers adopting and using Facebook? A quantitative study of Hertfordshire, UK applied to organizational and social change. Technological Forecasting and Social Change, 89: 293–305.
Culotta, A., Ravi, N. K. & Cutler, J. (2016). Predicting Twitter user demographics using distant supervision from website traffic data. Journal of Artificial Intelligence Research, 55: 389–408.
De Montjoye, Y.-A., Quoidbach, J., Robic, F. & Pentland, A. (2013). Predicting personality using novel mobile phone-based metrics. In A. Greenberg, W. Kennedy & N. Bos (eds.), Social computing, behavioral-cultural modeling and prediction (pp. 48–55). Heidelberg: Springer
Eurostat. (2017). Population structure and ageing. Retrieved from http://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing [Accessed 2018, March 1].
Eurostat. (2018). Individuals Internet use. Last Internet use in the last 3 months. Table [isoc_ci_ifp_iu]. Retrieved from http://ec.europa.eu/eurostat/web/products-datasets/-/isoc_ci_ifp_iu [Accessed 2018, March 1].
Ferdous, R., Osmani, V. & Mayora, O. (2015). Smartphone app usage as a predictor of perceived stress levels at workplace. In Proceedings of the 2015 9th international conference on pervasive computing technologies for healthcare (PervasiveHealth’15) (pp. 225–228). https://doi.org/10.4108/icst.pervasive-health.2015.260192. Istanbul: European Union Digital Library.
Fernández-Ardèvol, M. & Ivan, L. (2013). Older people and mobile communication in two European contexts. Romanian Journal of Communication and Public Relations, 15: 83–101.
Ferreira, D., Goncalves, J., Kostakos, V. et al. (2014). Contextual experience sampling of mobile application micro-usage. In Human–computer interaction with mobile devices & services (MobileHCI’14) (pp. 91–100). Toronto: ACM Press.
Ferreira, D., Kostakos, V. & Dey, A. K. (2012). Lessons learned from large-scale user studies: Using Android market as a source of data. International Journal of Mobile Human Computer Interaction, 4: 28–43.
Garattini, C. & Prendergast, D. (2015). Critical reflections on ageing and technology in the twenty-first century. In D. Prendergast & C. Garattini (eds.), Aging and the digital life course (pp. 1–15). New York: Berghahn Books.
Hajian, S. & Domingo-Ferrer, J. (2013). A methodology for direct and indirect discrimination prevention in data mining. IEEE Transactions on Knowledge and Data Engineering, 25: 1445–1459.
Holz, C., Bentley, F., Church, K. & Patel, M. (2015). “I’m just on my phone and they’re watching TV”: Quantifying mobile device use while watching television. In Conference on interactive experiences for TV and online video (TVX’15). Brussels: ACM Press
Ikebe, Y., Katagiri, M. & Takemura, H. (2012). Friendship prediction using semi-supervised learning of latent features in smartphone usage data. In Knowledge discovery and information retrieval (KDIR’2012). Barcelona: Science and Technology Publications, Lda.
Jones, S. L., Ferreira, D., Hosio, S., Goncalves, J., & Kostakos, V. (2015). Revisitation analysis of smartphone app use. In Pervasive and ubiquitous computing (UbiComp’15) (pp. 1197–1208). Osaka: ACM Press
Kiukkonen, N., Blom, J., Dousse, O., Gatica-Perez, D., & Laurila, J. (2010). Towards rich mobile phone datasets: Lausanne data collection campaign. In Pervasive services (ICPS’10). Berlin.
Kosinski, M., Stillwell, D. & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. National Academy of Sciences, 110: 5802–5805.
Lagacé, M., Charmarkeh, H., Tanguay, J. & Annick, L. (2015). How ageism contributes to the second-level digital divide: The case of Canadian seniors. Journal of Technologies and Human Usability, 11: 1–13.
Lee, U., Lee, J., Ko, M. et al. (2014). Hooked on smartphones: An exploratory study on smartphone overuse among college students. In Human factors in computing systems (CHI’14) (pp. 2327–2336). Toronto: ACM Press
Letouzé, E. (2015). Big data and development: General overview primer. Data-Pop Alliance. Retrieved from http://datapopalliance.org/wp-content/uploads/2015/12/Big-Data-Dev-Overview.pdf
Liu, J-.Y. & Yang, Y.-H. (2012). Inferring personal traits from music listening history. In Music information retrieval with user-centered and multimodal strategies (MIRUM ’12) (p. 31).
Mihailidis, P. (2014). A tethered generation: Exploring the role of mobile phones in the daily life of young people. Mobile Media & Communication, 2: 58–72.
Möller, A., Kranz, M., Schmid, B., Roalter, L. & Diewald, S. (2013). Investigating self-reporting behavior in long-term studies. In Human factors in computing systems (CHI’13) (pp. 2931–2940). Paris: ACM Press.
Nguyen, D., Gravel, R., Trieschnigg, D. & Meder, T. (2013). “How old do you think I am?”: A study of language and age in Twitter. In AAAI conference on weblogs and social media (pp. 439–448). Palo Alto, CA: AAAI Press.
Nguyen, D., Trieschnigg, D., Doğruöz, A. S. et al. (2014). Why gender and age prediction from tweets is hard: Lessons from a crowdsourcing experiment. In The annual meeting of the EPSRC network on vision & language and the technical meeting of the European network on integrating vision and language: A workshop of the international conference on computational linguistics (COLING 2014) (pp. 1950–1961). Dublin, Ireland: COLING.
Oktay, H., Firat, A. & Ertem, Z. (2012). Demographic breakdown of Twitter users: An analysis based on names. ASE BIGDATA/SOCIALCOM/CYBERSECURITY, 1–11.
Oreglia, E. & Kaye, J. “Jofish” (2012). A gift from the city: Mobile phones in rural China. In Computer-supported cooperative work and social computing (CSCW’15) (pp. 137–146). Seattle: ACM Press.
Pedreschi, D., Ruggieri, S. & Turini, F. (2009). Measuring discrimination in socially-sensitive decision records. In SIAM international conference on data mining (pp. 581–592). Nevada: Society for Industrial and Applied Mathematics
Peersman, C., Daelemans, W. & Van Vaerenbergh, L. (2011). Predicting age and gender in online social networks. In International workshop on search and mining user-generated contents (SMUC’11), 2011, October 28, Glasgow, Scotland, UK (pp. 37–44). ACM Press.
Perozzi, B. & Skiena, S. (2015a). Exact age prediction in social networks. In International conference on world wide web (pp. 91–92). Florence: ACM Press.
Popov, V., Kosinski, M., Stillwell, D. & Kielczewski, B. (2018). Apply magic sauce. Retrieved from https://applymagicsauce.com/research.html [Accessed 2018, January 1].
Rahmati, A., Tossell, C., Shepard, C., Kortum, P. & Zhong, L. (2012). Exploring iPhone usage. In Human–computer interact with mobile devices and services (MobileHCI’11). San Francisco: ACM Press
Righi, V., Sayago, S., Rosales, A. et al. (2018). Co-designing with a community of older learners for over 10 years by moving user-driven participation from the margin to the centre. CoDesign, 14: 32–44.
Rogers, Y., Paay, J., Brereton, M., Vaisutis, K., Marsden, G. & Vetere, F. (2014). Never too old: Engaging retired people inventing the future with MaKey. In Human factors in computing systems (CHI’14) (pp. 3913–3922). Toronto: ACM Press
Rosales, A. & Fernández-Ardèvol, M. (2016a). Beyond WhatsApp: Older people and smartphones. Romanian Journal of Communication and Public Relations, 18: 27–47.
Rosales, A. & Fernández-Ardèvol, M. (2016b). Smartphones, apps and older people’s interests: From a generational perspective. In Human–computer interaction with mobile devices and services (MobileHCI’16) (pp. 491–503). Florence: ACM Press.
Rosenthal, S. & McKeown, K. (2011). Age prediction in blogs: A study of style, content, and online behavior in pre-and post-social media generations. In Meeting of the Association for Computational Linguistics: Human language technologies (pp. 763–772). Portland: Association for Computational Linguistics
Schwartz, H. A., Eichstaedt, J. C., Kern, M. L. et al. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS One, 8: e73791.
Selwyn, N., Gorard, S., Furlong, J. & Madden, L. (2003). Older adults’ use of information and communications technology in everyday life. Ageing and Society, 23: 561–582.
Shin, C., Hong, J.-H. & Dey, A. K. (2012). Understanding and prediction of mobile application usage for smart phones. In Pervasive and ubiquitous computing (UbiComp’12) (p. 173). Pittsburgh: ACM Press
Singh, V. K., Freeman, L., Lepri, B. & Pentland, A. (2013). Predicting spending behavior using socio-mobile features. In Social computing (pp. 174–179). Washington: IEEE Computer Society Press
Smith, M., Szongott, C., Henne, B., Voigt, G. Von (2012). Big data privacy issues in public social media. Digital Ecosystems Technologies (DEST’12). Campione d’Italia: IEEE Computer Society Press
Srinivasan, V., Moghaddam, S., Mukherji, A. et al. (2014). MobileMiner: Mining your frequent patterns on your phone. In Joint conference on pervasive and ubiquitous computing (UbiComp’14) (pp. 389–400). Seattle: ACM Press.
Uricchio, W. (2017). Data, culture and the ambivalence of algorithms. In M. T. Schäfer & K. Van Es (eds.), The datafied society: Studying culture through data (pp. 125–137). Amsterdam, Amsterdam University Press
Wagner, D. T., Rice, A. & Beresford, A. R. (2013). Device analyzer: Understanding smartphone usage. In International conference on mobile and ubiquitous systems (pp. 1–12). Tokyo: Springer
Xu, R., Frey, R. M., Fleisch, E. & Ilic, A. (2016). Understanding the impact of personality traits on mobile app adoption – Insights from a large-scale field study. Computers in Human Behavior, 62: 244–256.
Yan, T., Chu, D., Ganesan, D., Kansal, A. & Liu, J. (2012). Fast app launching for mobile devices using predictive user context. In Mobile systems, applications, and services (MobiSys’12) (pp. 113–126). Low Wood Bay: ACM Press