Have a personal or library account? Click to login

Omissions by Design in a Survey: Is This a Good Choice when using Structural Equation Models?

Open Access
|Oct 2024

References

  1. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In Marcoulides, G. A., & Schumacker, R. E. (eds.), Advanced structural equation modelling, 243–277. Erlbaum.
  2. Azar, B. (2002). Finding a solution for missing data. Monitor on Psychology, 33,70.
  3. Bandalous, D. L., & Finney, S. J. (2010). Factor analysis: Exploratory and confirmatory. In Hancock, G. R. & Mueller, R. O. (eds.), The reviewer’s guide to quantitative methods in the social sciences. New York, NY: Routledge. DOI: https://doi.org/10.4324/9780203861554-15
  4. Bentler, P. M. (1990). Comparative Fit Indexes in Structural Equation Models. Psychological Bulletin, 107, 238–246. DOI: https://doi.org/10.1037/0033-2909.107.2.238
  5. Bollen, K. (1989). Structural Equations with Latent Variables. New York, USA: Wile
  6. Cangur, S., & Ercan, I. (2015). Comparison of model Fit Indices Used in Structural Equation Modeling Under Multivariate Normality, 14 (1), 152–167. DOI: https://doi.org/10.22237/jmasm/1430453580
  7. Davey, A. (2005). Issues in evaluating model fit with missing data. Struct. Equ. Model. Multidiscip. J., 12, 578–597. DOI: https://doi.org/10.1207/s15328007sem1204_4
  8. Enders, C. K. (2010). Applied Missing Data. New York, USA: The Guilford Press.
  9. Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods and model specification on structural equation modelling fit indexes. Struct. Equ. Model. Multidiscip. J., 6, 56–83. DOI: https://doi.org/10.1080/10705519909540119
  10. Fürst, G. (2020). Measuring creativity with planned missing data. The Journal of Creative Behavior, 54(1), 150–164. DOI: https://doi.org/10.1002/jocb.352
  11. Garnier-Vilarreal, M., Rhemtulla, M., & Little, T.D. (2014). Two-method planned missing designs for longitudinal research. International Journal of Behavioral Development, 38(5), 411–422. DOI: https://doi.org/10.1177/0165025414542711
  12. Graham, J., Taylor, B., Olchowski, A., & Cumsville, P. (2006). Planned missing data designs in psychological research. Psychological Methods, 11, 323–343. DOI: https://doi.org/10.1037/1082-989x.11.4.323
  13. Graham,J., Hofer,S. & Mackinnon,D. (1996). Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures. Multivariate Behavioral Research, 31, 197–218.
  14. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed). Columbus, Oh: Pearson.
  15. Hancock, G. R. & Mueller, R. O. (2011). The reliability paradox in assessing structural relations within covariance structure models. Educ. Psychol. Meas., 71, 306–324. DOI: https://doi.org/10.1177/0013164410384856
  16. Hoyle, R. H. (2012). Handbook of Structural equation Modelling. New York, USA: Guilford Press.
  17. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. DOI: https://doi.org/10.1080/10705519909540118
  18. Jia, F., Moore, E. W. G., Kinai, R. Crowe, K. S., Schoemann, A. M., & Little, T. D. (2014). Planned missing data designs with small sample sizes: How small is too small? Int. J. Behav. Dev., 38, 435–452. DOI: https://doi.org/10.1177/0165025414531095
  19. Kaplan, D. (2000). Structural Equation Modeling – Foundations and Extensions. Sage Publications. DOI: https://doi.org/10.4135/9781452226576
  20. Kenny, D. A., Kanishan, B. & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44, 486–507. DOI: https://doi.org/10.1177/0049124114543236
  21. Kenny, D. A. & McCoach, D. B. (2003). Effect of the number of variables on measures of fit in structural equation modelling. Structural Equation Modeling, 10, 333–351. DOI: https://doi.org/10.1177/0049124114543236
  22. Kline, R. B. (2010). Principles and Practice of Structural Equation Modeling (3rd ed.). Guilford Press, New York.
  23. Lang, K. M., Moore, E. W. G., & Grandfield, E. M. (2020). A novel item-allocation procedure for the three-form planned missing design. MethodsX, 7, 100941. DOI: https://doi.org/10.1016/j.mex.2020.100941
  24. Lawes, M., Schultze, M., & Eid, M. J. A. (2020). Making the most of your research budget: Efficiency of a three-method measurement design with planned missing data. Assessment, 27(5), 903–920. DOI: https://doi.org/10.1177/1073191118798050
  25. Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, W. G. (2013). On the Joys of Missing Data. Journal of Pediatric Psychology, 39(2), 151–162. DOI: https://doi.org/10.1093/jpepsy/jst048
  26. McNeish, D., & Wolf, M. G. (2021). Dynamic Fit Index Cutoffs for Confirmatory Factor Analysis Models. Pshycological Methods. DOI: https://doi.org/10.1080/00223891.2017.1281286
  27. Moore, E. W. G., Lang, K. M., & Grandfield, E. M. (2020). Maximizing data quality and shortening survey time: Three-form planned missing data survey design. Psychology of sport & Exercise , 51, 1–12. DOI: https://doi.org/10.1016/j.psychsport.2020.101701
  28. Moshagen, M. (2012). The model size effect in SEM: Inflated goodness of fit statistics are due to the size of the covariance matrix. Struct. Equ. Model. Multidiscip. J., 19, 86–98. DOI: https://doi.org/10.1080/10705511.2012.634724
  29. Nye, C. D. (2022). Reviewer Resources: Confirmatory Factor Analysis. Organ. Res. Methods. Online publishing. DOI: https://doi.org/10.1177/10944281221120541
  30. Pornprasertmanit, S., Miller, P., Schoemann, A., & Jorgensen, T. D. (2021). simsem: SIMulated Structural Equation Modeling (version 0.5-16) [R package]. Retrieved from http://simsem.org/
  31. Rhemtulla, M., & Hancock, G. R. (2016). Planned Missing Data Designs in Educational Psychology Research. Educational Psychologist, 51(3-4), 305–316.
  32. Rioux, C., Lewin, A., Odejimi, O. A., & Little, T. D. (2020). International Journal of Epidemiology, 1702–1711. DOI: https://doi.org/10.1093/ije/dyaa042
  33. Rubin, D. (1976). Inference and missing data. Biometrika, 63(3), 581–592. DOI: https://doi.org/10.1093/biomet/63.3.581
  34. Schoemann, A. M., Miller, P., Pornprasertmanit, S, & Wu, W. (2014). Using Monte Carlo simulations to determine power and sample size for planned missing designs. International Journal of Behavioural Development, 38(5), 471–479. DOI: https://doi.org/10.1177/0165025413515169
  35. Shi, D., Lee, T., & Maydeu-Olivares, A. (2019). Understanding the Model Size Effect on SEM Fit Indices. Educational and Psychological Measurement, 79(2), 310–334. DOI: https://doi.org/10.1177/0013164418783530
  36. Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180. DOI: https://doi.org/10.1207/s15327906mbr2502_4
  37. Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10. DOI: https://doi.org/10.1007/bf02291170
  38. Vicente, P. C. R. (2023). Evaluating the Effect of Planned Missing Designs in Structural Equation Model Fit Measures. Psych, 5, 983–995. DOI: https://doi.org/10.3390/psych5030064
  39. Wu, W., & Jia, F. (2021). Applying planned missingness designs to longitudinal panel studies in developmental science: An overview. Child & Adolescent Development, 2021 (175), 35–63. DOI: https://doi.org/10.1002/cad.20391
  40. Yuan, K.-H. (2005). Fit indices versus test statistics. Multivariate Behavioural Research, 40(1), 115–148. DOI: https://doi.org/10.1207/s15327906mbr4001_5
  41. Zhang, X., & Savalei, V. (2023). New computations for RMSEA and CFI following FIML and TS estimation with missing data. Psychol. Methods, 28, 263–283. DOI: https://doi.org/10.1080/10705511.2019.1642111
DOI: https://doi.org/10.2478/ngoe-2024-0018 | Journal eISSN: 2385-8052 | Journal ISSN: 0547-3101
Language: English
Page range: 83 - 91
Submitted on: May 1, 2024
Accepted on: Sep 1, 2024
Published on: Oct 6, 2024
Published by: University of Maribor, Faculty of Organizational Science
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Paula C. R. Vicente, published by University of Maribor, Faculty of Organizational Science
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.