Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In Marcoulides, G. A., & Schumacker, R. E. (eds.), Advanced structural equation modelling, 243–277. Erlbaum.
Bandalous, D. L., & Finney, S. J. (2010). Factor analysis: Exploratory and confirmatory. In Hancock, G. R. & Mueller, R. O. (eds.), The reviewer’s guide to quantitative methods in the social sciences. New York, NY: Routledge. DOI: https://doi.org/10.4324/9780203861554-15
Cangur, S., & Ercan, I. (2015). Comparison of model Fit Indices Used in Structural Equation Modeling Under Multivariate Normality, 14 (1), 152–167. DOI: https://doi.org/10.22237/jmasm/1430453580
Fürst, G. (2020). Measuring creativity with planned missing data. The Journal of Creative Behavior, 54(1), 150–164. DOI: https://doi.org/10.1002/jocb.352
Garnier-Vilarreal, M., Rhemtulla, M., & Little, T.D. (2014). Two-method planned missing designs for longitudinal research. International Journal of Behavioral Development, 38(5), 411–422. DOI: https://doi.org/10.1177/0165025414542711
Graham,J., Hofer,S. & Mackinnon,D. (1996). Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures. Multivariate Behavioral Research, 31, 197–218.
Hancock, G. R. & Mueller, R. O. (2011). The reliability paradox in assessing structural relations within covariance structure models. Educ. Psychol. Meas., 71, 306–324. DOI: https://doi.org/10.1177/0013164410384856
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. DOI: https://doi.org/10.1080/10705519909540118
Jia, F., Moore, E. W. G., Kinai, R. Crowe, K. S., Schoemann, A. M., & Little, T. D. (2014). Planned missing data designs with small sample sizes: How small is too small? Int. J. Behav. Dev., 38, 435–452. DOI: https://doi.org/10.1177/0165025414531095
Kenny, D. A., Kanishan, B. & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44, 486–507. DOI: https://doi.org/10.1177/0049124114543236
Kenny, D. A. & McCoach, D. B. (2003). Effect of the number of variables on measures of fit in structural equation modelling. Structural Equation Modeling, 10, 333–351. DOI: https://doi.org/10.1177/0049124114543236
Lang, K. M., Moore, E. W. G., & Grandfield, E. M. (2020). A novel item-allocation procedure for the three-form planned missing design. MethodsX, 7, 100941. DOI: https://doi.org/10.1016/j.mex.2020.100941
Lawes, M., Schultze, M., & Eid, M. J. A. (2020). Making the most of your research budget: Efficiency of a three-method measurement design with planned missing data. Assessment, 27(5), 903–920. DOI: https://doi.org/10.1177/1073191118798050
Little, T. D., Jorgensen, T. D., Lang, K. M., & Moore, W. G. (2013). On the Joys of Missing Data. Journal of Pediatric Psychology, 39(2), 151–162. DOI: https://doi.org/10.1093/jpepsy/jst048
Moore, E. W. G., Lang, K. M., & Grandfield, E. M. (2020). Maximizing data quality and shortening survey time: Three-form planned missing data survey design. Psychology of sport & Exercise , 51, 1–12. DOI: https://doi.org/10.1016/j.psychsport.2020.101701
Moshagen, M. (2012). The model size effect in SEM: Inflated goodness of fit statistics are due to the size of the covariance matrix. Struct. Equ. Model. Multidiscip. J., 19, 86–98. DOI: https://doi.org/10.1080/10705511.2012.634724
Rioux, C., Lewin, A., Odejimi, O. A., & Little, T. D. (2020). International Journal of Epidemiology, 1702–1711. DOI: https://doi.org/10.1093/ije/dyaa042
Schoemann, A. M., Miller, P., Pornprasertmanit, S, & Wu, W. (2014). Using Monte Carlo simulations to determine power and sample size for planned missing designs. International Journal of Behavioural Development, 38(5), 471–479. DOI: https://doi.org/10.1177/0165025413515169
Shi, D., Lee, T., & Maydeu-Olivares, A. (2019). Understanding the Model Size Effect on SEM Fit Indices. Educational and Psychological Measurement, 79(2), 310–334. DOI: https://doi.org/10.1177/0013164418783530
Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180. DOI: https://doi.org/10.1207/s15327906mbr2502_4
Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10. DOI: https://doi.org/10.1007/bf02291170
Vicente, P. C. R. (2023). Evaluating the Effect of Planned Missing Designs in Structural Equation Model Fit Measures. Psych, 5, 983–995. DOI: https://doi.org/10.3390/psych5030064
Zhang, X., & Savalei, V. (2023). New computations for RMSEA and CFI following FIML and TS estimation with missing data. Psychol. Methods, 28, 263–283. DOI: https://doi.org/10.1080/10705511.2019.1642111