Have a personal or library account? Click to login
A Review on Fatigue Performance of Concrete Structures Part I: Loading Parameters, Current Prediction Models and Design Approaches Cover

A Review on Fatigue Performance of Concrete Structures Part I: Loading Parameters, Current Prediction Models and Design Approaches

Open Access
|Jul 2023

References

  1. Aas-Jakobsen K: “Fatigue of concrete beams and columns”. Division of Concrete Structures, Norwegian Inst. of Technology, Trondheim, Norway, 1970.
  2. Hilsdorf H K: “Fatigue strength of concrete under varying flexural stresses”. ACI Journal Proceedings, 1966.
  3. Lee M & Barr B: “An overview of the fatigue behaviour of plain and fibre reinforced concrete”. Cement and Concrete Composites, 26 (4), 2004, pp. 299-305.
  4. Myrtja E, Soudier J, Prat E & Chaouche M: “Fatigue deterioration mechanisms of highstrength grout in compression”. Construction and Building Materials, 270, 2021.
  5. Saucedo L, Rena C Y, Medeiros A, Zhang X & Ruiz G: “A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete”. International journal of fatigue, 48, 2013, pp. 308-318.
  6. DNV-OS-J101: “Design of Offshore Wind Turbine Structures”. DNV, 2004.
  7. Wang X & Fang S-j: “Comparison of Fatigue Design Code Requirements for Wind Turbine Foundations”. ACI Special Publication, 348, 2021, pp. 145-158.
  8. Albert W A J: “Uber Treibseile am Harz. Archiv fur Mineralogie, Georgnosie”. Bergbau und Huttenkunde, 10, 1837. (In German).
  9. Wöhler A: “Über die festigkeitsversuche mit eisen und stahl”, Ernst & Korn, 1870. (In German).
  10. Afaghi M, Klausen A & Øverli J A: “A Review on Fatigue Performance of Concrete Structures Part II, Material Parameters and Environmental Factors”. Nordic Concrete Research (NCR) 68, 2023, pp. 127-144.
  11. Arthur P, Earl J C & Hodgkiess T: “Corrosion fatigue in concrete for marine applications”. ACI Special Publication, 75, 1982, pp. 1-24.
  12. Murdock J W: “A critical review of research on fatigue of plain concrete”. University of Illinois. Engineering Experiment Station. Bulletin; no. 475, 1965.
  13. Raithby K & Galloway J: “Effects of moisture condition age, and rate of loading on fatigue of plain concrete”. ACI Special Publication, 41, 1974, pp. 15-35.
  14. Assimacopoulos B M, Warner R F & Ekberg C E: “High speed fatigue tests on small specimens of plain concrete”. Journal of Prestressed Concrete Institute, 4 (2), 1959, pp. 53-70.
  15. AWAD M E-M: “Strength and deformation characteristics of plain concrete subjected to high repeated and sustained loads”. University of Illinois at Urbana-Champaign, USA, 1971.
  16. Sparks P R & Menzies J: “The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression”. Magazine of concrete research, 25 (83), 1973, pp. 73-80.
  17. Holmen J O: “Fatigue of concrete by constant and variable amplitude loading”. ACI Special Publication, 75, 1982, pp. 71-110.
  18. Zhang B, Phillips D & Wu K: “Effects of loading frequency and stress reversal on fatigue life of plain concrete”. Magazine of concrete research, 48 (177), 1996, pp. 361-375.
  19. Oneschkow N: “Influence of loading frequency on the fatigue behaviour of highstrength concrete”. Proceedings of the 9th FIB International PhD Symposium in Civil Engineering. July 22nd to 25th, 2012, pp. 235-240.
  20. Isojeh B, El-Zeghayar M & Vecchio F J: “Concrete damage under fatigue loading in uniaxial compression”. ACI Mater. J, 114 (2), 2017, pp. 225-235.
  21. Bažant Z P & Jirásek M: “Creep and hygrothermal effects in concrete structures”, Springer, Vol. 225, 2018.
  22. Sparks P: “The influence of rate of loading and material variability on the fatigue characteristics of concrete”. ACI Special Publication, 75, 1982, pp. 331-342.
  23. Tepfers R, Görlin J & Samuelsson T: “Concrete Subjected to pulsating load and pulsating deformation of different pulse waveform”. Nordisk betong, 17 (4), 1973.
  24. Oneschkow N: “Fatigue behaviour of high-strength concrete with respect to strain and stiffness”. International Journal of Fatigue, 87, 2016, pp. 38-49.
  25. Hordijk D A: “Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses”. Heron, 37 (1), 1992.
  26. Oh B H: “Cumulative damage theory of concrete under variable-amplitude fatigue loadings”. Materials Journal, 88 (1), 1991, pp. 41-48.
  27. Jinawath P: “Cumulative fatigue damage of plain concrete in compression”. University of Leeds, UK 1974.
  28. Tepfers R, Fridén C & Georgsson L: “A study of the applicability to the fatigue of concrete of the Palmgren-Miner partial damage hypothesis”. Magazine of Concrete Research, 29 (100), 1977, pp. 123-130.
  29. Hoff A: “Testing of high strength lightweight aggregate concrete elements”. Nordic Concrete Research, (3), 1984, pp. 63-91.
  30. Baktheer A & Chudoba R: “Experimental and theoretical evidence for the load sequence effect in the compressive fatigue behavior of concrete”. Materials and Structures, 54 (2), 2021.
  31. Hümme J, von der Haar C, Lohaus L & Marx S: “Fatigue behaviour of a normal‐strength concrete–number of cycles to failure and strain development”. Structural Concrete, 17 (4), 2016, pp. 637-645.
  32. Håverstad T & Jensen J: “Fatigue of LWA-Concrete”. SINTEF Report: STF65 A86082, Trondheim, Norway, 1986.
  33. Lenschow R: “Fatigue of concrete structures”. Fatigue of Steel and Concrete Structures, 1982, pp. 15-28.
  34. Hsu T T: “Fatigue of plain concrete”. in ACI Journal Proceedings, 1981.
  35. Aas-Jakobsen K & Lenschow R: “Behavior of reinforced columns subjected to fatigue loading”. ACI in Journal Proceedings, 1973.
  36. Opie F: “Probable fatigue life plain concrete with stress gradient”. ACI Journal Proceedings, 1966.
  37. Cornelissen H: “Fatigue failure of concrete in tension”. HERON, 29 (4), 1984, 1984.
  38. Dillmann R R: “Die Spannungsverteilung in der Biegedruckzone von Stahlbetonquerschnitten bei häufig wiederholter Belastung”. TH Darmstadt, 1981. (In German).
  39. Hsu T T: “Fatigue and microcracking of concrete”. Materiaux et Construction, 17, 1984, pp. 51-54.
  40. Murdock J W & Kesler C E: “Effect of range of stress on fatigue strength of plain concrete beams”. TAM R 130, 1958.
  41. Tepfers R: “Tensile fatigue strength of plain concrete”. ACI in Journal Proceedings, 1979.
  42. Tepfers R: “Fatigue of plain concrete subjected to stress reversals”. ACI Special Publication, 75, 1982, pp. 195-216.
  43. Neville A M: “A general relation for strengths of concrete specimens of different shapes and sizes”. ACI Journal Proceedings, 1966.
  44. Desayi P, Sundara Raja lyengar K & Sanjeeva Reddy T: “Stress-strain characteristics of concrete confined in steel spirals under repeated loading”. Matériaux et Construction, 12, 1979, pp. 375-383.
  45. Shah S P, Fafitis A & Arnold R: “Cyclic loading of spirally reinforced concrete”. Journal of Structural Engineering, 109 (7), 1983, pp. 1695-1710.
  46. Buyukozturk O & Tseng T-M: “Concrete in biaxial cyclic compression”. Journal of Structural Engineering, 110 (3), 1984, pp. 461-476.
  47. Hooi T T: “Effects of passive confinement on fatigue properties of concrete”. Magazine of Concrete Research, 52 (1), 2000, pp. 7-15.
  48. Takhar S, Jordan I & Gamble B: “Fatigue of concrete under lateral confining pressure”. ACI Special Publication, 41, 1974, pp. 59-70.
  49. Traina L A & Jeragh A A: “Fatigue of Plain Concrete Subjected to Biaxial-Cyclical Loading concrete; stresses; tension”. ACI Special Publication, 75, 1982, pp. 217-234.
  50. Song Y-p, Cao W & Meng X-h: “Fatigue properties of plain concrete under triaxial constant-amplitude tension-compression cyclic loading”. Journal of Shanghai University (English Edition), 9, 2005, pp. 127-133.
  51. Wang H & Song Y: “Fatigue capacity of plain concrete under fatigue loading with constant confined stress”. Materials and Structures, 44, 2011, pp. 253-262.
  52. Murdock J W: “The mechanism of fatigue failure in concrete”. University of Illinois at Urbana-Champaign, USA, 1960.
  53. Neville A M: “Properties of concrete”, Vol. 4, Longman London, 1995.
  54. Mallett G P: “Fatigue of reinforced concrete”. STATE-OF-THE-ART REVIEW, HMSO Publications Centre, (2), 1991.
  55. Farhani E: “Influence of rest periods on fatigue strength of concrete tested in water”. Oklahoma State University, USA, 1992.
  56. Viswanathan R: “Pore pressure effects on the mechanical properties of concrete”, Oklahoma State University, USA, 1982.
  57. American Concrete Institute: “Concrete Technology”. ACI Standard, 2017.
  58. Whaley C & Neville A: “Non-elastic deformation of concrete under cyclic compression”. Magazine of Concrete Research, 25 (84), 1973, pp. 145-154.
  59. Zažant Z P & Kim J-K: “Improved prediction model for time-dependent deformations of concrete: Part 5—Cyclic load and cyclic humidity”. Materials and Structures, 25, 1992, pp. 163-169.
  60. Raju N: “Prediction of the fatigue life of plain concrete in compression”. Building Science, 4 (2), 1969, pp. 99-102.
  61. Miner M A: “Cumulative damage in fatigue”. Journal of Applied Mechanics, 1945.
  62. Paris P & Erdogan F: “A critical analysis of crack propagation laws”. Journal of Fluids Engineering, 1963.
  63. Bažant Z P & Kazemi M T: “Size dependence of concrete fracture energy determined by RILEM work-of-fracture method”. International Journal of Fracture, 51, 1991, pp. 121-138.
  64. Baluch M, Qureshy A & Azad A: “Fatigue crack propagation in plain concrete”. Proceedings, Fracture of Concrete and Rock: SEM-RILEM International Conference June 17–19, 1987, Houston, Texas, USA, 1989, Springer.
  65. Kishen J C & Rao P S: “Fracture of cold jointed concrete interfaces”. Engineering Fracture Mechanics, 74 (1-2), 2007, pp. 122-131.
  66. Ortiz M: “A constitutive theory for the inelastic behavior of concrete”. Mechanics of Materials, 4 (1), 1985, pp. 67-93.
  67. Suaris W, Ouyang C & Fernando V M: “Damage model for cyclic loading of concrete”. Journal of Engineering Mechanics, 116 (5), 1990, pp. 1020-1035.
  68. Dattoma V & Giancane S: “Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography”. Composites Part B: Engineering, 47, 2013, pp. 283-289.
  69. Lei D, Zhang P, He J, Bai P & Zhu F: “Fatigue life prediction method of concrete based on energy dissipation”. Construction and Building Materials, 145, 2017, pp. 419-425.
  70. Dey A, Miyani G & Sil A: “Application of artificial neural network (ANN) for estimating reliable service life of reinforced concrete (RC) structure bookkeeping factors responsible for deterioration mechanism”. Soft Computing, 24, 2020, pp. 2109-2123.
  71. Lee S-C: “Prediction of concrete strength using artificial neural networks”. Engineering Structures, 25 (7), 2003, pp. 849-857.
  72. Jimenez-Martinez M & Alfaro-Ponce M: “Fatigue damage effect approach by artificial neural network”. International Journal of Fatigue, 124, 2019, pp. 42-47.
  73. Isied M & Souliman M: “Fatigue endurance limit model utilizing artificial neural network for asphalt concrete pavements”. Airfield and Highway Pavements 2019: Innovation and Sustainability in Highway and Airfield Pavement Technology, American Society of Civil Engineers Reston, VA, 2019, pp. 42-50.
  74. Abambres M & Lantsoght E O: “ANN-based fatigue strength of concrete under compression”. Materials, 12 (22), 2019.
  75. Zhang L, Wang Z, Wang L, Zhang Z, Chen X & Meng L: “Machine learning-based realtime visible fatigue crack growth detection”. Digital Communications and Networks, 7 (4), 2021, pp. 551-558.
  76. Nederlands Normalisatie-instituut: “Kwaliteitseisen voor het ontwerpen en construeren van tijdelijke bruggen”. 2009. (In Dutch)
  77. DNV-OS-C502: “Offshore Concrete Structures”. Det Norske Veritas: Høvik, Norway, 2010.
  78. Du Béton, Fédération Internationale: “fib model code for concrete structures 2010”, Wiley-vch Verlag Gmbh, 2013.
  79. EN 1992-1-1 Eurocode 2: “Design of concrete structures-Part 1-1: General ruels and rules for buildings. Brussels”. Brussels, Belgium: European Committee for Standardization (CEN), 2004.
  80. Lohaus L, Wefer M & Oneschkow N: “Ermüdungsbemessungsmodell für normal‐, hochund ultrahochfeste Betone”. Beton‐und Stahlbetonbau, 106 (12), 2011, pp. 836-846. (In German).
  81. Baktheer A, Hegger J & Chudoba R: “Enhanced assessment rule for concrete fatigue under compression considering the nonlinear effect of loading sequence”. International Journal of Fatigue, 126, 2019, pp. 130-142.
  82. Alliche A: “Damage model for fatigue loading of concrete”. International Journal of Fatigue, 26 (9), 2004, pp. 915-921.
  83. Schneider S, Hümme J, Marx S & Lohaus L: “Untersuchungen zum Einfluss der Probekörpergröße auf den Ermüdungswiderstand von hochfestem Beton”. Beton‐und Stahlbetonbau, 113 (1), 2018, pp. 58-67. (In German).
  84. Lenschow R: “Beregningsregler for utmatting av betongkonstruksjoner sett fra ulike innfallsvinkler”. SINTEF, Trondheim, Norway, 1986. (In Norwegian)
DOI: https://doi.org/10.2478/ncr-2023-0002 | Journal eISSN: 2545-2819 | Journal ISSN: 0800-6377
Language: English
Page range: 105 - 126
Submitted on: Mar 26, 2023
Accepted on: Jun 29, 2023
Published on: Jul 22, 2023
Published by: Nordic Concrete Federation
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Mohammad Afaghi, B. E. Klausen Anja, Jan Arve Øverli, published by Nordic Concrete Federation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.