Have a personal or library account? Click to login
Grading Material Properties in 3D Printed Concrete Structures Cover

Grading Material Properties in 3D Printed Concrete Structures

Open Access
|Jul 2022

References

  1. 1. Silfwerbrand, J, “Concrete and Sustainability – Some Thoughts from a Swedish Horizon”, Nordic Concrete Research, Vol. 63, Dec. 2020, pp. 79–87.<a href="https://doi.org/10.2478/ncr-2020-0019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/ncr-2020-0019</a>
  2. 2. Wangler, T, Roussel, N, Bos, F. P, Salet, T. A. M, and Flatt, R. J, “Digital Concrete: A Review”, Cement and Concrete Research, Vol. 123, Sept. 2019, Article 105780.<a href="https://doi.org/10.1016/j.cemconres.2019.105780" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2019.105780</a>
  3. 3. Boggarapu, V, Gujjala, R, Ojha, S, Acharya, S, Venkateswara babu, P, Chowdary, S, and kumar Gara, D, “State of the art in functionally graded materials”, Composite Structures, Vol. 262, Apr. 2021, Article 113596.<a href="https://doi.org/10.1016/j.compstruct.2021.113596" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compstruct.2021.113596</a>
  4. 4. Westerlind, H, “Choreographing Flow: A Study in Concrete Deposition”. PhD thesis, KTH Royal Institute of Technology, Dept. of Architecture, 2021.<a href="https://doi.org/10.2307/j.ctv13xprf6.39" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/j.ctv13xprf6.39</a>
  5. 5. Torelli, G, Fernández, M. G, and Lees, J. M, “Functionally graded concrete: Design objectives, production techniques and analysis methods for layered and continuously graded elements”, Construction and Building Materials, Vol. 242, May 2020, Article 118040.<a href="https://doi.org/10.1016/j.conbuildmat.2020.118040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2020.118040</a>
  6. 6. Zhang, C, Chen, F, Huang, Z, Jia, M, Chen, G, Ye, Y, Lin, Y, Liu, W, Chen, B, Shen, Q, Zhang, L, and Lavernia, E. J, “Additive manufacturing of functionally graded materials: A review”, Materials Science and Engineering, Vol. 764, Sept. 2019, Article 138209.<a href="https://doi.org/10.1016/j.msea.2019.138209" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.msea.2019.138209</a>
  7. 7. Bever, M. B and Duwez, P. E, “Gradients in composite materials”, Materials Science and Engineering, Vol. 10, Jan. 1972, pp. 1-8.<a href="https://doi.org/10.1016/0025-5416(72)90059-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0025-5416(72)90059-6</a>
  8. 8. Li, S, Xin, Y, Yu, Y, and Wang, Y, “Design for additive manufacturing from a force-flow perspective”, Materials & Design, Vol. 204, June 2021, Article 109664.<a href="https://doi.org/10.1016/j.matdes.2021.109664" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.matdes.2021.109664</a>
  9. 9. Nogata, F and Takahashi, H, “Intelligent functionally graded material: Bamboo”, Composites Engineering, Vol. 5, Jan. 1995, pp. 743–751.<a href="https://doi.org/10.1016/0961-9526(95)00037-N" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0961-9526(95)00037-N</a>
  10. 10. Kawasaki, A and Watanabe, R, “Concept and P/M fabrication of functionally gradient materials”, Ceramics International, Vol. 23, Jan. 1997, pp. 73–83.<a href="https://doi.org/10.1016/0272-8842(95)00143-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0272-8842(95)00143-3</a>
  11. 11. Naebe, M and Shirvanimoghaddam, K, “Functionally graded materials: A review of fabrication and properties”, Applied Materials Today, Vol. 5, Dec. 2016, pp. 223–245.<a href="https://doi.org/10.1016/j.apmt.2016.10.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apmt.2016.10.001</a>
  12. 12. Kieback, B, Neubrand, A, and Riedel, H, “Processing techniques for functionally graded materials”, Materials Science and Engineering: A, Vol. 362, Dec. 2003, pp. 81–106.<a href="https://doi.org/10.1016/S0921-5093(03)00578-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0921-5093(03)00578-1</a>
  13. 13. El-Galy, I. M, Saleh, B. I, and Ahmed, M. H, “Functionally graded materials classifications and development trends from industrial point of view”, SN Applied Sciences, Vol. 1, Oct. 2019, p. 1378.<a href="https://doi.org/10.1007/s42452-019-1413-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s42452-019-1413-4</a>
  14. 14. Mahmoud, D and Elbestawi, M. A, “Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review”, Journal of Manufacturing and Materials Processing, Vol. 1, Dec. 2017, p. 13.<a href="https://doi.org/10.3390/jmmp1020013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/jmmp1020013</a>
  15. 15. “Standard - Additive manufacturing – General principles – Terminology ISO/ASTM 52900:2015.”
  16. 16. Hilmas, G. E, Lombardi, J. L, and Hoffman, R. A, “Advances in the Fabrication of Functionally Graded Materials Using Extrusion Freeform Fabrication”, Functionally Graded Materials 1996 (Shiota, I and Miyamoto, Y, eds.), Amsterdam: Elsevier Science B.V., Jan. 1997, pp. 319–324.<a href="https://doi.org/10.1016/B978-044482548-3/50053-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/B978-044482548-3/50053-6</a>
  17. 17. Loh, G. H, Pei, E, Harrison, D, and Monzón, M. D, “An overview of functionally graded additive manufacturing”, Additive Manufacturing, Vol. 23, pp. 34–44, Oct. 2018.<a href="https://doi.org/10.1016/j.addma.2018.06.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.addma.2018.06.023</a>
  18. 18. Oxman, N, “Methods and Apparatus for Variable Property Rapid Prototyping”, Apr. 2011.<a href="https://doi.org/10.1080/17452759.2011.558588" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17452759.2011.558588</a>
  19. 19. Vaezi, M, Chianrabutra, S, Mellor, B, and Yang, S, “Multiple material additive manufacturing – Part 1: A review”, Virtual and Physical Prototyping, Vol. 8, Mar. 2013, pp. 19–50.<a href="https://doi.org/10.1080/17452759.2013.778175" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17452759.2013.778175</a>
  20. 20. Ngo, T. D, Kashani, A, Imbalzano, G, Nguyen, K. T. Q, and Hui, D, “Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges”, Composites Part B: Engineering, Vol. 143, June 2018, pp. 172–196.<a href="https://doi.org/10.1016/j.compositesb.2018.02.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.compositesb.2018.02.012</a>
  21. 21. Mahamood, R. M and Akinlabi, E. T, “Types of Functionally Graded Materials and Their Areas of Application”, Functionally Graded Materials (Mahamood, R. M and Akinlabi, E. T, eds.), Topics in Mining, Metallurgy and Materials Engineering, Cham: Springer International Publishing, 2017, pp. 9–21.<a href="https://doi.org/10.1007/978-3-319-53756-6_2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-53756-6_2</a>
  22. 22. Popovich, V. A, Borisov, E. V, Popovich, A. A, Sufiiarov, V. S, Masaylo,D. V, and Alzina, L, “Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties”, Materials & Design, Vol. 114, Jan. 2017, pp. 441–449.<a href="https://doi.org/10.1016/j.matdes.2016.10.075" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.matdes.2016.10.075</a>
  23. 23. Mirzaali, M. J, Caracciolo, A, Pahlavani, H, Janbaz, S, Vergani, L, and Zadpoor, A. A, “Multi-material 3D printed mechanical metamaterials: Rational design of elastic properties through spatial distribution of hard and soft phases”, Applied Physics Letters, Vol. 113, Dec. 2018, Article 241903.<a href="https://doi.org/10.1063/1.5064864" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1063/1.5064864</a>
  24. 24. Liu, T, Guessasma, S, Zhu, J, Zhang, W, and Belhabib, S, “Functionally graded materials from topology optimisation and stereolithography”, European Polymer Journal, Vol. 108, Nov. 2018, pp. 199–211.<a href="https://doi.org/10.1016/j.eurpolymj.2018.08.038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eurpolymj.2018.08.038</a>
  25. 25. Kuipers, T, Wu, J, and Wang, C. C. L, “CrossFill: Foam Structures with Graded Density for Continuous Material Extrusion”, Computer-Aided Design, Vol. 114, pp. 37–50, Sept. 2019.<a href="https://doi.org/10.1016/j.cad.2019.05.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cad.2019.05.003</a>
  26. 26. Greer, J. R and Deshpande, V. S, “Three-dimensional architected materials and structures: Design, fabrication, and mechanical behavior”, MRS Bulletin, Vol. 44, Oct. 2019, pp. 750–757.<a href="https://doi.org/10.1557/mrs.2019.232" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1557/mrs.2019.232</a>
  27. 27. Dirrenberger, J, Towards an Integrated Approach for the Development of Architectured Materials. Thesis, Sorbonne Université, Dec. 2018.
  28. 28. Martínez, J, Dumas, J, and Lefebvre, S, “Procedural Voronoi Foams for Additive Manufacturing”, ACM Transactions on Graphics, Vol. 35, 2016, pp. 1–14.<a href="https://doi.org/10.1145/2897824.2925922" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2897824.2925922</a>
  29. 29. Schumacher, C, Bickel, B, Rys, J, Marschner, S, Daraio, C, and Gross, M, “Microstructures to control elasticity in 3D printing”, ACM Transactions on Graphics, Vol. 34, July 2015, pp. 136:1–136:13.<a href="https://doi.org/10.1145/2766926" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/2766926</a>
  30. 30. Van Der Putten, J, Deprez, M, Cnudde, V, De Schutter, G, and Van Tittelboom, K, “Microstructural Characterization of 3D Printed Cementitious Materials”, Materials, Vol. 12, Jan. 2019, p. 2993.<a href="https://doi.org/10.3390/ma12182993676630631527419" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ma12182993676630631527419</a>
  31. 31. Yu, S, Xia, M, Sanjayan, J, Yang, L, Xiao, J, and Du, H, “Microstructural characterization of 3D printed concrete”, Journal of Building Engineering, Vol. 44, Dec. 2021, Article 102948.<a href="https://doi.org/10.1016/j.jobe.2021.102948" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jobe.2021.102948</a>
  32. 32. Vantyghem, G, De Corte, W, Boel, V, and Steeman, M, “Structural and thermal performances of topological optimized masonry blocks”, Asian Congress of Structural and Multidisciplinary Optimization 2016, 2016.
  33. 33. Westerlind, H and Hernández, J, “Knitting Concrete”, Second RILEM International Conference on Concrete and Digital Fabrication (Bos, F. P, Lucas, S. S, Wolfs, R. J, and Salet, T. A, eds.), (Cham), Springer International Publishing, 2020, pp. 988–997.<a href="https://doi.org/10.1007/978-3-030-49916-7_96" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-030-49916-7_96</a>
  34. 34. van den Heever, M, Bester, F, Kruger, J, and van Zijl, G, “Numerical modelling strategies for reinforced 3D concrete printed elements,” Additive Manufacturing, Vol. 50, Feb. 2022, Article, 102569.<a href="https://doi.org/10.1016/j.addma.2021.102569" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.addma.2021.102569</a>
  35. 35. Singamneni, S, Roychoudhury, A, Diegel, O, and Huang, B, “Modelling and evaluation of curved layer fused deposition”, Journal of Materials Processing Technology, Vol. 212, Jan. 2012, pp. 27–35.<a href="https://doi.org/10.1016/j.jmatprotec.2011.08.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmatprotec.2011.08.001</a>
  36. 36. Cheng, T, Tahouni, Y, Wood, D, Stolz, B, Mülhaupt, R, and Menges, A, “Multifunctional Mesostructures: Design and Material Programming for 4D-printing”, Symposium on Computational Fabrication, SCF ’20, (New York, NY, USA), Association for Computing Machinery, Nov. 2020, pp. 1–10.<a href="https://doi.org/10.1145/3424630.3425418" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3424630.3425418</a>
  37. 37. Li, S, Wang, S, Yu, Y, Zhang, X, and Wang, Y, “Design of heterogeneous mesoscale structure for high mechanical properties based on force-flow: 2D geometries”, Additive Manufacturing, Vol. 46, Oct. 2021, Article 102063.<a href="https://doi.org/10.1016/j.addma.2021.102063" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.addma.2021.102063</a>
  38. 38. Dirrenberger, J, “From Architectured Materials to Large-Scale Additive Manufacturing”, Robotic Building (Bier, H, ed.), Springer Series in Adaptive Environments, Springer International Publishing, 2018, pp. 79–96.<a href="https://doi.org/10.1007/978-3-319-70866-9_4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-70866-9_4</a>
  39. 39. Breseghello, L, “Toolpath Simulation, Design and Manipulation in Robotic 3D Concrete Printing”, in A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (Eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 623-632.<a href="https://doi.org/10.52842/conf.caadria.2021.1.623" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.52842/conf.caadria.2021.1.623</a>
  40. 40. Wu, J, Aage, N, Westermann, R, and Sigmund, O, “Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures”, IEEE Transactions on Visualization and Computer Graphics, Vol. 24, Feb. 2018, pp. 1127–1140.<a href="https://doi.org/10.1109/TVCG.2017.265552328129160" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TVCG.2017.265552328129160</a>
  41. 41. Roesler, J, Paulino, G, Gaedicke, C, Bordelon, A, and Park, K, “Fracture Behavior of Functionally Graded Concrete Materials for Rigid Pavements”, Transportation Research Record, Vol. 2037, Jan. 2007, pp. 40–49.<a href="https://doi.org/10.3141/2037-04" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3141/2037-04</a>
  42. 42. Wen, X.-d, Tu, J.-l, and Gan, W.-z, “Durability protection of the functionally graded structure concrete in the splash zone”, Construction and Building Materials, Vol. 41, Apr. 2013, pp. 246–251.<a href="https://doi.org/10.1016/j.conbuildmat.2012.11.119" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2012.11.119</a>
  43. 43. Nes, L. G and Øverli, J. A, “Structural behaviour of layered beams with fibre-reinforced LWAC and normal density concrete”, Materials and Structures, Vol. 49, Jan. 2016, pp. 689–703.<a href="https://doi.org/10.1617/s11527-015-0530-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1617/s11527-015-0530-9</a>
  44. 44. Bajaj, K, Shrivastava, Y, and Dhoke, P, “Experimental Study of Functionally Graded Beam with Fly Ash”, Journal of The Institution of Engineers (India): Series A, Vol. 94, Nov. 2013, pp. 219–227.<a href="https://doi.org/10.1007/s40030-014-0057-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40030-014-0057-z</a>
  45. 45. Heinz, P, Herrmann, M, and Sobek, W, “Herstellungsverfahren und Anwendungsbereiche für functional gradierte Bauteile im Bauwesen. Abschlussbericht”, 2012.
  46. 46. Herrmann, M and Sobek, W, “Functionally graded concrete: Numerical design methods and experimental tests of mass-optimized structural components”, Structural Concrete, Vol. 18, no. 1, 2017, pp. 54–66.<a href="https://doi.org/10.1002/suco.201600011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/suco.201600011</a>
  47. 47. Buswell, R. A, da Silva, W. R. L, Bos, F. P, Schipper, H. R, Lowke, D, Hack, N, Kloft, H, Mechtcherine, V, Wangler, T, and Roussel, N, “A process classification framework for defining and describing Digital Fabrication with Concrete”, Cement and Concrete Research, Vol. 134, Aug. 2020, Article 106068.<a href="https://doi.org/10.1016/j.cemconres.2020.106068" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2020.106068</a>
  48. 48. Bos, F, Wolfs, R, Ahmed, Z, and Salet, T, “Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing”, Virtual and Physical Prototyping, Vol. 11, no. 3, 2016, pp. 209–225.<a href="https://doi.org/10.1080/17452759.2016.1209867" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17452759.2016.1209867</a>
  49. 49. Pajonk, A, Prieto, A, Blum, U, and Knaack, U, “Multi-material additive manufacturing in architecture and construction: A review”, Journal of Building Engineering, Vol. 45, Jan. 2022, Article 103603.<a href="https://doi.org/10.1016/j.jobe.2021.103603" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jobe.2021.103603</a>
  50. 50. Tay, Y. W. D, Panda, B, Paul, S. C, Mohamed, N. A. N, Tan, M. J, and Leong, K. F, “3D printing trends in building and construction industry: A review”, Virtual and Physical Prototyping, Vol. 12, July 2017, pp. 261–276.<a href="https://doi.org/10.1080/17452759.2017.1326724" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17452759.2017.1326724</a>
  51. 51. Craveiro, F, Bártolo, H, and Bártolo, P, “Functionally graded structures through building manufacturing”, Advanced Materials Research, Vol. 683, 2013, pp. 775–778.<a href="https://doi.org/10.4028/www.scientific.net/AMR.683.775" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4028/www.scientific.net/AMR.683.775</a>
  52. 52. Craveiro, F, Duarte, J. P, Bártolo, H, and Bartolo, P. J, “Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0”, Automation in Construction, Vol. 103, July 2019, pp. 251–267.<a href="https://doi.org/10.1016/j.autcon.2019.03.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2019.03.011</a>
  53. 53. Craveiro, F, Nazarian, S, Bartolo, H, Bartolo, P. J, and Pinto Duarte, J, “An automated system for 3D printing functionally graded concrete-based materials”, Additive Manufacturing, Vol. 33, May 2020, Article 101146.<a href="https://doi.org/10.1016/j.addma.2020.101146" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.addma.2020.101146</a>
  54. 54. Reiter, L, Wangler, T, Anton, A, and Flatt, R. J, “Setting on demand for digital concrete – Principles, measurements, chemistry, validation”, Cement and Concrete Research, Vol. 132, June 2020, Article 106047.<a href="https://doi.org/10.1016/j.cemconres.2020.106047" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2020.106047</a>
  55. 55. Anton, A. Y, “Vertical Modulations”, ACADIA 19: UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019), CUMINCAD, 2019, pp. 596-605.<a href="https://doi.org/10.52842/conf.acadia.2019.596" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.52842/conf.acadia.2019.596</a>
  56. 56. Anton, A, Bedarf, P, Yoo, A, Dillenburger, B, Reiter, L, Wangler, T, and Flatt, R. J, “Concrete Choreography: Prefabrication of 3D-Printed Columns”, Fabricate 2020: Making Resilient Architecture, UCL Press, Apr. 2020, pp. 286–293.<a href="https://doi.org/10.2307/j.ctv13xpsvw.41" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2307/j.ctv13xpsvw.41</a>
  57. 57. Anton, A, Jipa, A, Reiter, L, and Dillenburger, B, “Fast Complexity: Additive Manufacturing for Prefabricated Concrete Slabs”, Second RILEM International Conference on Concrete and Digital Fabrication (Bos, F. P, Lucas, S. S, Wolfs, R. J, and Salet, T. A, eds.), RILEM Bookseries, (Cham), Springer International Publishing, 2020, pp. 1067–1077.<a href="https://doi.org/10.1007/978-3-030-49916-7_102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-030-49916-7_102</a>
  58. 58. Ahmed, Z, Bos, F, van Brunschot, M, and Salet, T, “On-demand additive manufacturing of functionally graded concrete”, Virtual and Physical Prototyping, Vol. 15, no. 2, 2020, pp. 194–210.<a href="https://doi.org/10.1080/17452759.2019.1709009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17452759.2019.1709009</a>
  59. 59. Gebhard, L, Mata-Falcón, J, Markić, T, and Kaufmann, W, “Aligned Interlayer Fibre Reinforcement for Digital Fabrication with Concrete”, Fibre Reinforced Concrete: Improvements and Innovations (Serna, P, Llano-Torre, A, Martí-Vargas, J. R, and Navarro-Gregori, J, eds.), RILEM Bookseries, (Cham), Springer International Publishing, 2021, pp. 87–98.<a href="https://doi.org/10.1007/978-3-030-58482-5_8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-030-58482-5_8</a>
  60. 60. Shen, W, Wu, M, Zhang, B, Xu, G, Cai, J, Xiong, X, and Zhao, D, “Coarse aggregate effectiveness in concrete: Quantitative models study on paste thickness, mortar thickness and compressive strength” Construction and Building Materials, Vol. 289, June 2021, p. 123171.<a href="https://doi.org/10.1016/j.conbuildmat.2021.123171" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.conbuildmat.2021.123171</a>
  61. 61. Duballet, R, Baverel, O, and Dirrenberger, J, “Building Systems in Robotic Extrusion of Cementitious Materials”, PhD thesis, Sept. 2019.
  62. 62. Duballet, R, Gosselin, C, and Roux, P, “Additive Manufacturing and Multi-Objective Optimization of Graded Polystyrene Aggregate Concrete Structures”, Modelling Behaviour: Design Modelling Symposium 2015 (Thomsen, M. R, Tamke, M, Gengnagel, C, Faircloth, B, and Scheurer, F, eds.), Cham: Springer International Publishing, 2015, pp. 225–235.<a href="https://doi.org/10.1007/978-3-319-24208-8_19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-319-24208-8_19</a>
  63. 63. Choy, S. Y, Sun, C.-N, Leong, K. F, and Wei, J, “Compressive properties of functionally graded lattice structures manufactured by selective laser melting”, Materials & Design, Vol. 131, Oct. 2017, pp. 112–120.<a href="https://doi.org/10.1016/j.matdes.2017.06.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.matdes.2017.06.006</a>
  64. 64. Tay, D. Y. W, “Large scale 3D concrete printing: Process and materials properties”, 2020.
  65. 65. Tay, Y. W. D, Lim, J. H, Li, M, and Tan, M. J, “Creating functionally graded concrete materials with varying 3D printing parameters”, Virtual and Physical Prototyping, Vol. 17, no. 3, Mar. 2022, pp. 662–681.<a href="https://doi.org/10.1080/17452759.2022.2048521" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/17452759.2022.2048521</a>
  66. 66. Yuan, P. F, Zhan, Q, Wu, H, Beh, H. S, and Zhang, L, “Real-time toolpath planning and extrusion control (RTPEC) method for variable- width 3D concrete printing”, Journal of Building Engineering, Vol. 46, Apr. 2022, Article 103716.<a href="https://doi.org/10.1016/j.jobe.2021.103716" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jobe.2021.103716</a>
  67. 67. Bendsøe, M. P and Sigmund, O, “Design with anisotropic materials”, Topology Optimization: Theory, Methods, and Applications (Bendsøe, M. P and Sigmund, O, eds.), Berlin, Heidelberg: Springer, 2004, pp. 159–220.<a href="https://doi.org/10.1007/978-3-662-05086-6_3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-662-05086-6_3</a>
  68. 68. Beghini, L. L, Beghini, A, Katz, N, Baker, W. F, and Paulino, G. H, “Connecting architecture and engineering through structural topology optimization”, Engineering Structures, Vol. 59, Feb. 2014, pp. 716–726.<a href="https://doi.org/10.1016/j.engstruct.2013.10.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.engstruct.2013.10.032</a>
  69. 69. Craveiro, F, Bartolo, H. M, Gale, A, Duarte, J. P, and Bartolo, P. J, “A design tool for resource-efficient fabrication of 3d-graded structural building components using additive manufacturing”, Automation in Construction, Vol. 82, Oct. 2017, pp. 75–83.<a href="https://doi.org/10.1016/j.autcon.2017.05.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2017.05.006</a>
  70. 70. Roussel, N, “Rheological requirements for printable concretes”, Cement and Concrete Research, Vol. 112, Oct. 2018, pp. 76–85.<a href="https://doi.org/10.1016/j.cemconres.2018.04.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2018.04.005</a>
  71. 71. Suiker, A. S. J, “Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments”, International Journal of Mechanical Sciences, Vol. 137, Mar. 2018, pp. 145–170.<a href="https://doi.org/10.1016/j.ijmecsci.2018.01.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijmecsci.2018.01.010</a>
  72. 72. Wolfs, R. J. M, Bos, F. P, and Salet, T. A. M, “Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing”, Cement and Concrete Research, Vol. 106, Apr. 2018, pp. 103–116.<a href="https://doi.org/10.1016/j.cemconres.2018.02.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2018.02.001</a>
  73. 73. Vantyghem, G, Ooms, T, and De Corte, W, “FEM modelling techniques for simulation of 3D concrete printing”, arXiv:2009.06907 [physics], Sept. 2020.
  74. 74. Vantyghem, G, Ooms, T, and De Corte, W, “VoxelPrint: A Grasshopper plug-in for voxel-based numerical simulation of concrete printing”, Automation in Construction, Vol. 122, Feb. 2021, Article 103469.<a href="https://doi.org/10.1016/j.autcon.2020.103469" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.autcon.2020.103469</a>
  75. 75. Comminal, R, Leal da Silva, W. R, Andersen, T. J, Stang, H, and Spangenberg, J, “Modelling of 3D concrete printing based on computational fluid dynamics”, Cement and Concrete Research, Vol. 138, Dec. 2020, Article 106256.<a href="https://doi.org/10.1016/j.cemconres.2020.106256" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2020.106256</a>
  76. 76. Wolfs, R. J. M, Salet, T. A. M, and Roussel, N, “Filament geometry control in extrusion-based additive manufacturing of concrete: The good, the bad and the ugly”, Cement and Concrete Research, Vol. 150, Dec. 2021, Article 106615.<a href="https://doi.org/10.1016/j.cemconres.2021.106615" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cemconres.2021.106615</a>
  77. 77. Brauer, C and Aukes, D. M, “Automated Generation of Multi-Material Structures Using the VoxelFuse Framework”, Symposium on Computational Fabrication, SCF ’20, (New York, NY, USA), Association for Computing Machinery, Nov. 2020, pp. 1–8.<a href="https://doi.org/10.1145/3424630.3425417" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3424630.3425417</a>
DOI: https://doi.org/10.2478/ncr-2022-0004 | Journal eISSN: 2545-2819 | Journal ISSN: 0800-6377
Language: English
Page range: 73 - 89
Submitted on: Mar 31, 2022
Accepted on: Jun 23, 2022
Published on: Jul 11, 2022
Published by: Nordic Concrete Federation
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 José Hernández Vargas, Helena Westerlind, Johan Silfwerbrand, published by Nordic Concrete Federation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.