1. Guidelines for nonlinear structural analysis and design of buildings: “part IIb - reinforced concrete moment frames (PY - 2017 PB)”. National Institute of Standards and Technology (NIST), 2017.
2. Lin X & Lu X: “Numerical Models to Predict the Collapse Behavior of RC Columns and Frames”. <em>The Open Civil Engineering Journal</em>. No. 11(1), 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.2174/1874149501711010854" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2174/1874149501711010854</a></dgdoi:pub-id>
3. Kaba S A & Mahin S A: “Refined modelling of reinforced concrete columns for seismic analysis”. University of California, Earthquake Engineering Research Center. 1984.
5. Takeda T, Sozen M A & Nielsen N N: “Reinforced concrete response to simulated earthquakes”. <em>Journal of the Structural Division</em>. No. 96(12), 1970, pp. 2557-2573.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1061/JSDEAG.0002765" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/JSDEAG.0002765</a></dgdoi:pub-id>
6. Sengupta P & Li B: “Hysteresis Modeling of Reinforced Concrete Structures: State of the Art”. <em>ACI Structural Journal</em>. No. 114(1). 2017.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.14359/51689422" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14359/51689422</a></dgdoi:pub-id>
8. Dowell O K, Seible F & Wilson E L: “Pivot hysteresis model for reinforced concrete members”. <em>ACI Structural Journal</em>. No. 95, 1998, pp. 607-617.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.14359/575" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.14359/575</a></dgdoi:pub-id>
9. Youssf O, ElGawady M A & Mills J E: “Experimental investigation of crumb rubber concrete columns under seismic loading”. <em>InStructures</em>., No. 3, 2015, pp. 13-27.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.istruc.2015.02.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.istruc.2015.02.005</a></dgdoi:pub-id>
10. Mander J B, Priestley M J & Park R: “Theoretical stress-strain model for confined concrete”. <em>Journal of Structural Engineering</em>. No. 114(8), 1988, pp. 1804-1826.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)0733-9445(1988)114:8(1804)</a></dgdoi:pub-id>
12. Vatanshenas A, Mori T & Murota N: “Structural rehabilitation using high damping rubber bearing (HDRB)”. <em>Bulletin of the New Zealand Society for Earthquake Engineering</em>. No. 54(1), 2021, pp. 49-57.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.5459/bnzsee.54.1.49-57" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5459/bnzsee.54.1.49-57</a></dgdoi:pub-id>
13. Vatanshenas A, Heydarian H & Tafreshi S T: “Seismic rehabilitation by steel jacketing method affected by different base support conditions using pushover analysis”. <em>American Journal of Engineering Research (AJER)</em>. No. 7 (5), 2018, pp. 208-212.