Have a personal or library account? Click to login
Application of an Improved Empirical Model for Rheology Prediction of Cement Pastes Modified with Filler from Manufactured Sand Cover

Application of an Improved Empirical Model for Rheology Prediction of Cement Pastes Modified with Filler from Manufactured Sand

Open Access
|Dec 2021

References

  1. 1. Ferraris C F, Obla K H & Hill R: “The Influence of Mineral Admixtures on the Rheology of Cement Paste and Concrete”. Cement and Concrete Research, Vol. 31, No. 2, 2001, pp. 245-255.10.1016/S0008-8846(00)00454-3
  2. 2. Krieger I M & Dougherty T J: “A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres”. Transactions of the society of rheology III, 1959, pp. 137-152.10.1122/1.548848
  3. 3. Chong J S, Christiansen E B & Baer A D: “Rheology of Concentrated Suspensions”. Journal of applied polymer science, Vol. 15, 1971, pp. 2007-2021.10.1002/app.1971.070150818
  4. 4. Mooney M: “The Viscosity of a Concentrated Suspension of Spherical Particles”. Journal of Colloid Interface Science, Vol. 6, No. 2, 1951, pp. 162-170.10.1016/0095-8522(51)90036-0
  5. 5. Eilers H: “Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration”. (“The Viscosity of Emulsions of Highly Viscous Materials as a Function of Concentration”). Kolloid Zeitschrift, Vol. 97, No. 3, 1941, pp. 313-321 (in German).10.1007/BF01503023
  6. 6. Quemada D: “Rheology of Concentrated Disperse Systems and Minimum Energy Dissipation Principle”. Rheologica Acta, Vol. 16, 1977, pp. 82-94.10.1007/BF01516932
  7. 7. Robinson J V: “The Viscosity of Suspensions of Spheres”. Journal of Physical Chemistry, Vol. 53, No. 7, 1949, pp. 1042-1056.10.1021/j150472a007
  8. 8. Spangenberg J, Scherer G W, Hopkins A B & Torquato S: “Viscosity of Bimodal Suspensions with Hard Spherical Particles”. Journal of Applied Physics, Vol. 116, No. 18, 2014.10.1063/1.4901463
  9. 9. Damineli B L, John V N, Lagerblad B & Pileggi R G: “Viscosity Prediction of Cement-Filler Suspensions using Interference Model: A Route for Binder Efficiency Enhancement”, Cement and Concrete Research, Vol. 84, 2016, pp. 8-19.10.1016/j.cemconres.2016.02.012
  10. 10. Buscall R, McGowan I J, Mills P D A, Stewart R F, Sutton D, White L R & Yates G E: “The Rheology of Strongly-Flocculated Suspensions”. Journal of Non-Newtonian Fluid Mechanics, Vol. 24, 1987, pp. 183-202.10.1016/0377-0257(87)85009-7
  11. 11. Kapur P C, Scales P J, Boger D V & Healy T W: “Yield Stress of Suspensions Loaded with Size Distributed Particles”. AICHE Journal, Vol. 43, 1997, pp. 1171-1179.10.1002/aic.690430506
  12. 12. Scales P J, Johnson S B, Healy T W & Kapur P C: “Shear Yield Stress of Partially Flocculated Colloidal Suspensions”. AICHE Journal, Vol. 44, 1998, pp. 538–544.10.1002/aic.690440305
  13. 13. Zhou Z, Solomon M J, Scales P J & Boger D V: “The Yield Stress of Concentrated Flocculated Suspensions of Size Distributed Particles”. Journal of Rheology, Vol. 43, 1999, pp. 651-671.10.1122/1.551029
  14. 14. Flatt R J & Bowen P: “Yodel: A Yield Stress Model for Suspensions”. Journal of the American Ceramic Society, Vol. 89, No. 4, 2006, pp.1244-1256.10.1111/j.1551-2916.2005.00888.x
  15. 15. Powers T C: “The Properties of Fresh Concrete”. Wiley & Sons, New York, USA, 1968, 664 pp.
  16. 16. Cepuritis R, Jacobsen S, Smeplass S, Mørtsell E, Wigum B J & Ng S: “Influence of Crushed Aggregate Fines with Micro-Proportioned Particle Size Distributions on Rheology of Cement Paste”. Cement and Concrete Composites, Vol. 80, 2017, pp. 64-79.10.1016/j.cemconcomp.2017.02.012
  17. 17. Skare E L, Cepuritis R, Spangenberg J, Ramenskiy E, Mørtsell E, Smeplass S, Jacobsen S: “Microproportioning Paste with Crushed Aggregate Filler by Use of Specific Surface Area”, Proceedings, The 15th International Congress on the Chemistry of Cement, Prague, Czech Republic, 2019. Ed. Gemrich J. ISSN 2523-935X, 10 pp.
  18. 18. Mørtsell E: “Modellering av Delmaterialenes Betydning for Betongens Konsistens”. (“Modelling the Effect of Concrete Part Materials on Concrete Consistency“). (PhD Thesis). Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, Norway, 1996, 301 pp. (In Norwegian).
  19. 19. Cepuritis R: “Development of Crushed Sand for Concrete Production with Micro-proportioning”. (PhD Thesis). Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, Norway, 2016, 386 pp.
  20. 20. Bengtsson M & Evertsson CM: “Measuring characteristics of aggregate material from vertical shaft impact crushers”. Minerals Engineering, Vol. 19 (15), 2006, pp. 1479-1486.10.1016/j.mineng.2006.08.003
  21. 21. Wallevik O.H: “Den ferske betongens reologi og anvendelse på betong med og uten tilsetning av silikastøv». (Rheology of Fresh Concrete and Application to Concrete With and Without Addition of Silica Fume”). (PhD Thesis) Norges tekniske høgskole, Trondheim, Norway, 1990, 185 pp.
  22. 22. Sheiat S, Ranjbar N, Frellsen J, Skare E L, Cepuritis R, Jacobsen S & Spangenberg J: “Neural Network Predictions of the Simulated Rheological Response of Cement Paste in the FlowCyl”. Neural Compututing & Applications, Vol. 33, 2021, pp. 13027–13037.10.1007/s00521-021-05999-4
  23. 23. Great Wall Mineral, From the GWM Selection [Internet], [Read 05.04.19]
  24. 24. Jacobsen S, Maage M, Smeplass S, Kjellsen K O, Sellevold E J, Lindgård J, Cepuritis R, Myrdal R, Bjøntegaard Ø, Geiker M et al.: “TKT 4215 Concrete Technology 1”, Compendium, Norwegian University of Science and Technology, Department of Structural Engineering, Trondheim, Norway, 2016.
  25. 25. Ng S, Mujica H & Smeplass S: “Design of a Simple and Cost-Efficient Mixer for Matrix Rheology Testing”, Nordic Concrete Research, Vol. 51, No. 3, 2014, pp. 15-28.
  26. 26. Spangenberg J, da Silva W R L, Comminal R, Mollah M T, Andersen T J & Stang H: “Numerical simulation of multi-layer 3D concrete printing”, RILEM Technical Letters 6, 2021, pp. 119-123.10.21809/rilemtechlett.2021.142
  27. 27. Comminal R, da Silva W R L, Andersen T J, Stang H & Spangenberg J: “Modelling of 3D concrete printing based on computational fluid dynamics”, Cement and Concrete Research, Vol. 138, 106256, 2020, 12 pages.10.1016/j.cemconres.2020.106256
  28. 28. Comminal R, da Silva W R L, Andersen T J, Stang H & Spangenberg J: “Influence of processing parameters on the layer geometry in 3D concrete printing: experiments and modelling”, RILEM international Conference on Concrete and Digital Fabrication, 2020, pp.852-862.10.1007/978-3-030-49916-7_83
  29. 29. Rosquoëta F, Alexis A, Khelidj A & Phelipot A: “Experimental Study of Cement Grout: Rheological Behavior and Sedimentation”. Cement and Concrete Research, Vol. 33, 2003, pp. 713-722.10.1016/S0008-8846(02)01036-0
  30. 30. Cepuritis R, Skare E L, Ramenskiy E, Mørtsell E, Smeplass S, Li S, Jacobsen S & Spangenberg J: “Analysing Limitations of the FlowCyl as a One-Point Viscometer Test for Cement Paste”. Construction and Building Materials, Vol. 218, 2019, pp. 333-340.10.1016/j.conbuildmat.2019.05.127
  31. 31. Skare E L, Jacobsen S, Cepuritis R, Smeplass S & Spangenberg J: “Decreasing the Magnitude of Shear Rates in the FlowCyl”. Proceedings, 5th fib Congress, Melbourne, Australia, 2018.
DOI: https://doi.org/10.2478/ncr-2021-0005 | Journal eISSN: 2545-2819 | Journal ISSN: 0800-6377
Language: English
Page range: 1 - 18
Submitted on: Mar 26, 2021
Accepted on: Nov 29, 2021
Published on: Dec 30, 2021
Published by: Nordic Concrete Federation
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Elisabeth Leite Skare, Rolands Cepuritis, Ernst Mørtsell, Sverre Smeplass, Jon Spangenberg, Stefan Jacobsen, published by Nordic Concrete Federation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.