Have a personal or library account? Click to login
Determination of the Stress Increase of the Unbonded Tendon in a Continuous Concrete Beam at Ultimate Capacity Using Nonlinear Analysis Cover

Determination of the Stress Increase of the Unbonded Tendon in a Continuous Concrete Beam at Ultimate Capacity Using Nonlinear Analysis

By: Tarja Nakari and  Anssi Laaksonen  
Open Access
|Jul 2021

References

  1. 1. Maguire M, Chang M, Collins W & Sun Y: “Stress Increase of Unbonded Tendons in Continuous Post-Tensioned Members”. Journal of Bridge Engineering ASCE, 22(2), 2017, 12 pp.10.1061/(ASCE)BE.1943-5592.0000991
  2. 2. Mattock A H, Yamazaki J & Kattula B T: “Comparative Study of Prestressed Concrete Beams, With and Without Bond”. ACI Journal, V.68, No. 2, February 1971, pp. 116-12510.14359/11298
  3. 3. Cooke N, Park R & Yong P: “Flexural Strength of Prestressed Concrete Members with Unbonded Tendons”. PCI Journal, 26(6), 1981, pp. 52-8010.15554/pcij.11011981.52.81
  4. 4. Du G & Tao X: “Ultimate Stress of Unbonded Tendons in Partially Prestressed Concrete Beams”. PCI Journal, V. 31, No 6, 1985, pp. 72-9110.15554/pcij.11011985.72.91
  5. 5. Burns N H, Charney F A & Vines W R: “Tests of One-Way Post-Tensioned Slabs with Unbonded Tendons”. PCI Journal, V. 33, No. 5, September-October 1978, 66-8310.15554/pcij.09011978.66.83
  6. 6. Harajli M H, Hijazi S: “Evaluation of the Ultimate Steel Stress in Partially Prestressed Concrete Members”. PCI Journal, V.36, No. 1, 1991, pp 62-82.10.15554/pcij.01011991.62.82
  7. 7. Harajli M H: “On the Stress in Unbonded Tendons at Ultimate: Critical Assessment and Proposed Changes”. ACI Structural Journal, V. 103, No. 6, 2006, pp. 803-81210.14359/18231
  8. 8. Harajli M H: “Proposed Modification of AASHTO-LRFD for Computing Stress in Unbonded Tendons at Ultimate”. Journal of Bridge Engineering ASCE, V.16, No. 6, 2011, pp.828-83810.1061/(ASCE)BE.1943-5592.0000183
  9. 9. Harajli M H: “Tendon Stress at Ultimate in Continuous Unbonded Post-Tensioned Members: Proposed Modification of ACI 318, Eq. (18-4) and (18-5)”. ACI Structural Journal, V. 109, No. 2, 2012, pp.183-19210.14359/51683629
  10. 10. Naaman A E & Alkhairi F M: “Stress at Ultimate in Unbonded Post-Tensioned Tendons: Part 2 – Proposed Methodology”. ACI Structural Journal, V.88, No. 6, November-December 1991, pp. 683-69210.14359/1288
  11. 11. Weller B: “Experimentelle Untersuchungen zum Biegetragverhalten von Durchlaufträgen mit Vorspannung ohne Verbund“. Deutscher Ausschuss für Stahlbeton, Heft 391, Berlin 1988, Seite 73-125
  12. 12. Kordina K & Hegger J: “Zur Ermittlung der Biegebruch-Tragfähigkeit bei Vorspannung ohne Verbund”. Beton- und Stahlbetonbau, Heft 4, April 1987, Seite 85-9010.1002/best.198700150
  13. 13. Zhou W & Zheng W Z: “Experimental Research on Plastic Design Method and Moment Redistribution in Continuous Beams Prestressed with Unbonded Tendons”. Magazine of Concrete Research, V. 62, No. 1, 2010, pp. 51-6410.1680/macr.2008.62.1.51
  14. 14. Zhou W & Zheng W Z: “Unbonded Tendon Stresses in Continuous Post-Tensioned Beams”. ACI Structural Journal, V.111, No. 3, May-June 2014, pp. 525-53610.14359/51686569
  15. 15. Maguire M, Collins W N, Halbe K R & Roberts-Wollmann C L: “Multi-Span Members with Unbonded Tendons: Ultimate Strength Behavior”. ACI Structural Journal, No. 113-S18, March-April, 2016, pp. 195-20410.14359/51688192
  16. 16. Allouche E N, Campbell T I, Green M F & Soudki K A: “Tendon Stress in Continuous Unbonded Prestressed Concrete Members – Part 2: Parametric Study”. PCI Journal, 44(1), 1999, pp. 60-7210.15554/pcij.01011999.60.73
  17. 17. Kim S K & Lee D H: “Nonlinear Analysis Method for Continuous Post-Tensioned Concrete Members with Unbonded Tendons”. Engineering Structures, 40, 2012, pp.487-50010.1016/j.engstruct.2012.03.021
  18. 18. Vu N A, Castel A & François R: “Response of Post-tensioned Concrete Beams with Unbonded Tendons including Serviceability and Ultimate State”. Engineering Structures, 32(2), 2010, pp. 556-55910.1016/j.engstruct.2009.11.001
  19. 19. Zimmermann J: “Biegetragverhalten und Bemessung von Trägern mit Vorspannung ohne Verbund”. Deutscher Ausschuss für Stahlbeton, Heft 391, Berlin 1988, Seite 5-71
  20. 20. European standard EN 1992-1-1, Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, 2005, 226 pp.
  21. 21. fib Model Code 2010 (2013), fib Model Code for Concrete Structures. International Federation for Structural Concrete. Berlin: Ernst & Sohn, 2013, 402 p.10.1002/9783433604090
  22. 22. Rombach G: “Spannbetonbau”. 2. Auflage, 2009, Seite 60810.1002/9783433600573
  23. 23. Krüger W & Mertzsch O: “Spannbetonbau-Praxis nach Eurocode 2 Mit Berechnungsbeispielen”. 3. Auflage, Bauwerk BBB, Beuth, 2012, Seite 318
  24. 24. ACI Committee 318: “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary”. American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.
  25. 25. LUSAS Academic Bridge Plus software
DOI: https://doi.org/10.2478/ncr-2021-0004 | Journal eISSN: 2545-2819 | Journal ISSN: 0800-6377
Language: English
Page range: 109 - 128
Submitted on: Mar 26, 2021
Accepted on: Jun 26, 2021
Published on: Jul 17, 2021
Published by: Nordic Concrete Federation
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Tarja Nakari, Anssi Laaksonen, published by Nordic Concrete Federation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.