Have a personal or library account? Click to login
Locally Produced UHPC: The Influence of Type and Content of Steel Fibres Cover

Locally Produced UHPC: The Influence of Type and Content of Steel Fibres

Open Access
|Jul 2021

References

  1. 1. Graybeal B, Brühwiler E, Kim B-S, Toutlemonde F, Voo Y L & Zaghi A: “International Perspective on UHPC in Bridge Engineering”. Journal of Bridge Engineering, Vol. 25, No. 11, 2020, p. 04020094.10.1061/(ASCE)BE.1943-5592.0001630
  2. 2. Naaman A E & Wille K: “The path to ultra-high performance fiber reinforced concrete (UHP-FRC): five decades of progress”. Proceedings, HiPerMat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany, March 2012, pp. 3-15.
  3. 3. Azmee N M & Shafiq N: “Ultra-high performance concrete: From fundamental to applications”. Case Studies in Construction Materials, Vol. 9, 2018, p. e00197.10.1016/j.cscm.2018.e00197
  4. 4. Russell H G & Graybeal B A: “Ultra-high performance concrete: A state-of-the-art report for the bridge community”. FHWA Publication No.: FHWA-HRT-13-060, Federal Highway Administration, United States, 2013, p. 171.
  5. 5. Alkaysi M & El-Tawil S: “Effects of variations in the mix constituents of ultra high performance concrete (UHPC) on cost and performance”. Materials and Structures, Vol. 49, No. 10, 2016, pp. 4185-4200.10.1617/s11527-015-0780-6
  6. 6. Graybeal B A: “Development of Non-Proprietary Ultra-High Performance Concrete for Use in the Highway Bridge Sector”. FHWA Publication No.: FHWA-HRT-13-100, Federal Highway Administration, United States, 2013, p. 8.
  7. 7. Larsen I L, Terjesen O, Thorstensen R T & Kanstad T: “Use of Concrete for Road Infrastructure: A SWOT Analysis Related to the three Catchwords Sustainability, Industrialisation and Digitalisation”. Nordic Concrete Research, Vol. 60, No. 1, 2019, p. 31.10.2478/ncr-2019-0007
  8. 8. Alsalman A, Dang C N & Hale W M: “Development of ultra-high performance concrete with locally available materials”. Construction and Building Materials, Vol. 133, 2017, pp. 135-145.10.1016/j.conbuildmat.2016.12.040
  9. 9. Wille K, Naaman A E & Parra-Montesinos G J: “Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way”. ACI Materials Journal, Vol. 108, No. 1, 2011, pp. 46-54.10.14359/51664215
  10. 10. Fidjestol P, Thorsteinsen R & Svennevig P: “Making UHPC with local materials—the way forward”. Proceedings, HiPerMat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, Germany, March 2012, pp. 207-214.
  11. 11. Jacobsen S, Haugen L C & Arntsen B: “Developing Ultra High Performance Concrete for concrete products”. Nordic Concrete Research, Vol. 33, No. 1, 2005, pp. 156-158.
  12. 12. Camacho E, López J Á & Serna P: “Definition of three levels of performance for UHPFRCVHPFRC with available materials”. Proceedings, HiPerMat 2012, 3rd international symposium on UHPC and Nanotechnology for high performance construction materials, Kassel, 2012, pp. 249-256.
  13. 13. Bache H H: “Introduction to compact reinforced composite”. Nordic Concrete Research, Vol. 6, 1987, pp. 19-33.
  14. 14. Martius-Hammer T A, Wagner E, Schramm R, Fosså K T & Berge J: “Construction of large UHPC structures - Experience from a slipforming mock-up test”. Proceedings, FIB 2018 - Proceedings for the 2018 fib Congress: Better, Smarter, Stronger, 2019, pp. 3571-3580.
  15. 15. Aarup B, Jensen L R & Ellegaard P: “Slender CRC columns”. Nordic Concrete Research, Vol. 34, No. 2, 2005, pp. 80-97.
  16. 16. Aarup B K: “A type of UHPC not quite up to standards”. Proceedings, AFGC-ACI-fib-RILEM Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC 2017), Montpellier, France, October 2017, Vol. 2, pp. 965-974.
  17. 17. Bergsagel D, Granlund M, Klausen S S & Skårnes A: “Ultra-high performance concrete (UHPC) – The influence of curing regime, fibre and aggregate”. (“Ultrahøyfast betong (UHPC) – Innvirkning av herderegime, fiber og sand på betongens egenskaper”). Bachelor Thesis, University of Agder, Department of Engineering Sciences, Grimstad, Norway, 2020. (in Norwegian).
  18. 18. Stengel T & Schießl P: “Sustainable construction with UHPC–from life cycle inventory data collection to environmental impact assessment”. Proceedings, Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, March 2008, pp. 461-468.
  19. 19. Yoo D Y, Kang S T & Yoon Y S: “Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers”. Composite Structures, Vol. 147, 2016, pp. 220-230.10.1016/j.compstruct.2016.03.032
  20. 20. Gesoglu M, Güneyisi E, Muhyaddin G F & Asaad D S: “Strain hardening ultra-high performance fiber reinforced cementitious composites: Effect of fiber type and concentration”. Composites Part B: Engineering, Vol. 103, 2016, pp. 74-83.10.1016/j.compositesb.2016.08.004
  21. 21. Yoo D Y, Kim M J, Kim S W & Park J J: “Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers”. Construction and Building Materials, Vol. 150, 2017, pp. 383-394.10.1016/j.conbuildmat.2017.06.018
  22. 22. Meng W & Khayat K H: “Effect of Hybrid Fibers on Fresh Properties, Mechanical Properties, and Autogenous Shrinkage of Cost-Effective UHPC”. Journal of Materials in Civil Engineering, Vol. 30, No. 4, 2018, p. 04018030.10.1061/(ASCE)MT.1943-5533.0002212
  23. 23. Wu Z, Shi C, He W & Wu L: “Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete”. Construction and Building Materials, Vol. 103, 2016, pp. 8-14.10.1016/j.conbuildmat.2015.11.028
  24. 24. Wu Z, Shi C, He W & Wang D: “Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements”. Cement and Concrete Composites, Vol. 79, 2017, pp. 148-157.10.1016/j.cemconcomp.2017.02.010
  25. 25. Markovic I: “High-performance hybrid-fibre concrete: development and utilisation”. PhD Thesis, Delft University of Technology, Civil Engineering and Geosciences, Delft, The Netherlands, 2006, 228.
  26. 26. Larsen I L & Thorstensen R T: “The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review”. Construction and Building Materials, Vol. 256, 2020, p. 119459.10.1016/j.conbuildmat.2020.119459
  27. 27. Richard P & Cheyrezy M: “Composition of reactive powder concretes”. Cement and Concrete Research, Vol. 25, No. 7, 1995, pp. 1501-1511.10.1016/0008-8846(95)00144-2
  28. 28. Yu R, Spiesz P & Brouwers H J H: “Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses”. Cement and Concrete Composites, Vol. 55, 2015, pp. 383-394.10.1016/j.cemconcomp.2014.09.024
  29. 29. Wille K & Boisvert-Cotulio C: “Material efficiency in the design of ultra-high performance concrete”. Construction and Building Materials, Vol. 86, 2015, pp. 33-43.10.1016/j.conbuildmat.2015.03.087
  30. 30. Yoo D Y, Kim S, Park G J, Park J J & Kim S W: “Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites”. Composite Structures, Vol. 174, 2017, pp. 375-388.10.1016/j.compstruct.2017.04.069
  31. 31. Le Hoang A & Fehling E: “Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete”. Construction and Building Materials, Vol. 153, 2017, pp. 790-806.10.1016/j.conbuildmat.2017.07.130
  32. 32. Shi C, Wu Z, Xiao J, Wang D, Huang Z & Fang Z: “A review on ultra high performance concrete: Part I. Raw materials and mixture design”. Construction and Building Materials, Vol. 101, 2015, pp. 741-751.10.1016/j.conbuildmat.2015.10.088
  33. 33. Funk J E & Dinger D R: “Derivation of the Dinger-Funk Particle Size Distribution Equation”. “Predictive Process Control of Crowded Particulate Suspensions: Applied to Ceramic Manufacturing”, Springer US, Boston, MA, 1994, pp. 75-83.10.1007/978-1-4615-3118-0_6
  34. 34. Andreasen A H M & Andersen J: “On the relationship between grain gradation and space in products made from loose grains (with some experiments)”. (“Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten”). Kolloid-Zeitschrift, Vol. 50, No. 3, 1930, pp. 217-228. (in German)10.1007/BF01422986
  35. 35. Graybeal B A: “Material property characterization of ultra-high performance concrete”. FHWA Publication No.: FHWA-HRT-06-103, Federal Highway Administration, United States, 2006, p. 186.
  36. 36. ASTM International: “ASTM C230/C230M-14, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement”. West Conshohocken, PA, United States, 2014, p. 7.
  37. 37. European Committee for Standardization: “NS-EN 12350-7: 2009, Testing fresh concrete: Air content–Pressure methods”. NS-EN 12350-7: 2009, Brussels, Belgium, 2009, p. 28.
  38. 38. European Committee for Standardization: “NS-EN 12390-3:2009, Testing hardened concrete - Part 3: Compressive strength of test specimens”. NS-EN 12390-3:2009, Brussels, Belgium, 2009, p. 24.
  39. 39. European Committee for Standardization: “NS-EN 12390-13:2013, Testing hardened concrete - Part 13: Determination of secant modulus of elasticity in compression”. NS-EN 12390-13:2013, Brussels, Belgium, 2014, p. 20.
  40. 40. ASTM International: “ASTM C293 / C293M-16, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading)”. West Conshohocken, PA, United States, 2016, p. 4.
  41. 41. Del Monte E, Boschi S & Vignoli A: “Prediction of compression strength of ancient mortars through in situ drilling resistance technique”. Construction and Building Materials, Vol. 237, 2020, p. 117563.10.1016/j.conbuildmat.2019.117563
  42. 42. Wille K, Xu M, El-Tawil S & Naaman A E: “Dynamic impact factors of strain hardening UHP-FRC under direct tensile loading at low strain rates”. Materials and Structures/Materiaux et Constructions, Vol. 49, No. 4, 2016, pp. 1351-1365.10.1617/s11527-015-0581-y
  43. 43. Xu L, Wu F, Chi Y, Cheng P, Zeng Y & Chen Q: “Effects of coarse aggregate and steel fibre contents on mechanical properties of high performance concrete”. Construction and Building Materials, Vol. 206, 2019, pp. 97-110.10.1016/j.conbuildmat.2019.01.190
  44. 44. Raju R A, Lim S, Akiyama M & Kageyama T: “Effects of concrete flow on the distribution and orientation of fibers and flexural behavior of steel fiber-reinforced self-compacting concrete beams”. Construction and Building Materials, Vol. 262, 2020, p. 119963.10.1016/j.conbuildmat.2020.119963
  45. 45. Boulekbache B, Hamrat M, Chemrouk M & Amziane S: “Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material”. Construction and Building Materials, Vol. 24, No. 9, 2010, pp. 1664-1671.10.1016/j.conbuildmat.2010.02.025
  46. 46. Abdallah S, Fan M & Rees D W: “Bonding mechanisms and strength of steel fiber– reinforced cementitious composites: overview”. Journal of Materials in Civil Engineering, Vol. 30, No. 3, 2018, p. 04018001.10.1061/(ASCE)MT.1943-5533.0002154
  47. 47. Markovic I, Walraven J & Van Mier J: “Tensile behaviour of high performance hybrid fibre concrete”. Proceedings, 5th International Symposium on Fracture Mechanics of Concrete and Concrete Structures, Vail Colorado, 2004, Vol. 2, pp. 1113-1121.
DOI: https://doi.org/10.2478/ncr-2021-0003 | Journal eISSN: 2545-2819 | Journal ISSN: 0800-6377
Language: English
Page range: 31 - 52
Submitted on: Mar 26, 2021
Accepted on: May 27, 2021
Published on: Jul 17, 2021
Published by: Nordic Concrete Federation
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Ingrid Lande, Rein Terje Thorstensen, published by Nordic Concrete Federation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.