Have a personal or library account? Click to login
A Comparative Analysis of the Two Electrolyte Flow Configurations in Electrode Tool to Improve Efficiency in Electrochemical Machining Cover

A Comparative Analysis of the Two Electrolyte Flow Configurations in Electrode Tool to Improve Efficiency in Electrochemical Machining

Open Access
|Feb 2026

References

  1. Abbas, A.M. and Khleif, A.A. (2023) ‘EDM electrode design and analysis to enhance process performance’, Tikrit Journal of Engineering Sciences, 30(4), pp. 145-152. DOI: 10.25130/tjes.30.4.15.
  2. Aghdeab, S.H., Abdulwahhab, A.B. and Mohsein, Z.H. (2023) ‘Investigation study of electrical discharge machining parameters on material removal rate for AISI M2 material’, Al-Qadisiyah Journal for Engineering Sciences, 16(1), pp. 42-46. DOI: 10.30772/qjes.v16i1.832.
  3. Angulo, A. et al. (2020) ‘Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors’, Joule, 4(3), pp. 555-579. DOI: 10.1016/j.joule.2020.01.005.
  4. Bingham, B., Atanasov, A. and Parmigiani, J. (2013) The Design and Fabrication of an Electrochemical Machining Test Apparatus, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). DOI: 10.1115/IMECE2013-66299.
  5. Chi, G., Yi, D. and Liu, H. (2020) ‘Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.% HCl solution at 35°C’, Journal of Materials Research and Technology, 9(2), pp. 1162-1174. DOI: 10.1016/j.jmrt.2019.11.044.
  6. Ge, Z. et al. (2024) ‘Study on Improving Electrochemical Machining Performances through Energy Conversion of Electrolyte Fluid’, Coatings, 14(4). DOI: 10.3390/coatings14040406.
  7. Giribabu, A., Rama Rao, S. and Padmanbhan, G. (2014) ‘Optimization of machining parameters in ECM of AL/B4C composites using genetic algorithms.’, International Journal of Mechanical Engineering and Robotics, 3(3), pp. 36-50.
  8. Henseler, J. and Chin, W. (2010) ‘A Comparison of Approaches for the Analysis of Interaction Effects Between Latent Variables Using Partial Least Squares Path Modeling’, Structural Equation Modeling, 17, pp. 82-109. DOI: 10.1080/10705510903439003.
  9. Jia Yuan, C. et al. (2021) ‘Electrochemical machining (ECM) and its recent development’, Jurnal Tribologi, 28 (November 2020), pp. 20-31.
  10. kariem Shather, S. and Husien Alwan, H. (2012) ‘Prediction of Metal Removal Rate and Surface Roughness in Electrochemical Machining (ECM)’, Engineering and Technology Journal, 30(8), pp. 1415-1427. DOI: 10.30684/etj.30.8.12.
  11. Kozak, J. (2011) ‘The Effect of Electrochemical Machining on the Fatigue Strength of Heat Resistance Alloys’, Fatigue of Aircraft Structures, 2011(3), pp. 57-63. DOI: 10.2478/v10164-010-0038-2.
  12. Leese, R. and Ivanov, A. (2016) ‘Electrochemical micromachining: An introduction’, Advances in Mechanical Engineering, 8. DOI: 10.1177/1687814015626860.
  13. Liu, J. et al. (2015) ‘Experimental Investigation on Electrochemical Machining of γ-TiAl Intermetallic’, in Procedia CIRP, pp. 20-24. DOI: 10.1016/j.procir.2015.08.049.
  14. Mohamed, A. and Martin, N. (2023) ‘Effects of Electrochemical Machining Parameters on Aluminum Hybrid Composites’, NanoWorld Journal, 9, pp. 83-86. DOI: 10.17756/nwj.2023-s3-015.
  15. Muthuramalingam, T. et al. (2018) ‘Multi Criteria Decision Making of Abrasive Flow Oriented Process Parameters in Abrasive Water Jet Machining Using Taguchi–DEAR Methodology’, Silicon, 10(5), pp. 2015-2021. DOI: 10.1007/s12633-017-9715-x.
  16. Okolie, J.A. et al. (2021) ‘Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review’, The Journal of Supercritical Fluids, 173, p. 105199. DOI: 10.1016/j.supflu.2021.105199.
  17. Prayogo, G.S. and Lusi, N. (2019) ‘Determining the Effect of Machining Parameters on Material Removal Rate of AISI D2 Tool Steel in Electrochemical Machining Process Using the Taguchi Method’, IOP Conference Series: Materials Science and Engineering, 494(1). DOI: 10.1088/1757-899X/494/1/012055.
  18. Qiu, H. et al. (2023) ‘Quantitative Description of Bubble Formation in Response to Electrolyte Engineering’, Langmuir, 39(14), pp. 4993-5001. DOI: 10.1021/acs.langmuir.2c03488.
  19. Rajurkar, K.P. et al. (1999) ‘New Developments in Electro-Chemical Machining’, CIRP Annals, 48(2), pp. 567-579. DOI: 10.1016/S0007-8506(07)63235-1.
  20. Rajurkar, K.P., Sundaram, M.M. and Malshe, A.P. (2013) ‘Review of electrochemical and electrodischarge machining’, Procedia CIRP, 6, pp. 13-26. DOI: 10.1016/j.procir.2013.03.002.
  21. Singh, G., Rao, P.S. and Singh, R. (2023) ‘Electrochemical Machining Process Using Different Electrolytes for Improved Process Efficiency’, E3S Web of Conferences, 391. DOI: 10.1051/e3sconf/202339101168.
  22. Sunthrasakaran, N. et al. (2018) ‘Analysis of Electric Field and Current Density for Different Electrode Configuration of XLPE Insulation’, International Journal of Engineering & Technology, 7, p. 127. DOI: 10.14419/ijet.v7i3.36.29092.
  23. Suresh, H.S., Sudhir, G.B. and Dayanand, S.B. (2014) ‘Analysis of electrochemical machining process parameters affecting material removal rate of hastelloy C-276’, Int. J. Adv. Res. Sci. Eng. Technol, 5, pp. 18-23.
  24. Tang, L. et al. (2014) ‘The effect of electrolyte current density on the electrochemical machining S-03 material’, The International Journal of Advanced Manufacturing Technology, 71. DOI: 10.1007/s00170-014-5617-x.
  25. Tazmeev, A., Tazmeeva, R. and Tazmeev, B. (2021) ‘On the effect of large-scale perturbations of surface of a liquid electrolyte cathode on the properties of gas’, Journal of Physics: Conference Series, 1870, p. 12022. DOI: 10.1088/1742-6596/1870/1/012022.
  26. Thi Bich Nhung, N., Thanh Liem, D. and Quoc Thanh, T. (2020) ‘The effects of the process parameters in electrochemical machining on the surface quality’, Science & Technology Development JournalEngineering and Technology, 3(SI1). DOI: 10.32508/stdjet.v3isi1.725.
  27. Torino, P.D.I. (2024) ‘Recent trends on electro chemical machining process of metallic materials : a review’, Archives of Civil and Mechanical Engineering [Preprint], (December). DOI: 10.1007/s43452-023-00703-w.
  28. Wei, W. et al. (2022) ‘A Review of Sodium Chloride-based Electrolytes and Materials for Electrochemical Energy Technology’, Journal of Materials Chemistry A, 10. DOI: 10.1039/D1TA09371A.
  29. Yazdani, M. and Rasti, A. (2025) ‘Assessment on surface integrity in electrochemical grinding of AISI 304’, Heliyon, 11(1), p. e41435. DOI: 10.1016/j.heliyon.2024.e41435.
  30. Zander, D. et al. (2021) ‘Oxide Formation during Transpassive Material Removal of Martensitic 42CrMo4 Steel by Electrochemical Machining’, Materials, 14, p. 402. DOI: 10.3390/ma14020402.
DOI: https://doi.org/10.2478/mspe-2026-0014 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 138 - 144
Submitted on: Apr 1, 2025
|
Accepted on: Jan 1, 2026
|
Published on: Feb 16, 2026
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Ahmed Basil Abdulwahhab, Ahmed Mohammed Abbas, Zainab H. Mohsein, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.