Have a personal or library account? Click to login
Strengthening the Working Surfaces of Gears Through Dynamic Burnishing Cover

Strengthening the Working Surfaces of Gears Through Dynamic Burnishing

Open Access
|Nov 2025

References

  1. Biały W., Czerwińska-Lubszczyk A., Czerwiński S., Gear gears used in machines/mining devices. Support Systems in Production Engineering. Mining – Prospects and Threats. 2019, vol. 8, no. 1, pp. 376-391.
  2. Skoć A., Świtoński E., Gears: principles of operation, geometric and strength calculations. PWN, Warszawa 2017.
  3. Adamecki D., Grzegorzek W., Mikuła J., Mikuła, S., Mechanisms of failure of gears in the driving systems of construction machinery and their diagnosis in exploitation conditions. KOMTECH Conference, Institute of Mining Technology KOMAG, Gliwice. 2020, pp. 59-70.
  4. Bartelmus W., Mining Machine Diagnostics. Opencast Mining. Silesia Publishing House. Katowice 1998.
  5. Capdessus C., Sidahmed M., Lacoume J.L., Cyclostationary processes: Application in gear faults early diagnosis. Mechanical Systems and Signal Processing. 2000, vol. 14, no. 3, pp. 371-385.
  6. Radkowski S., Low energy components of vibroacoustic signal as the basis for diagnosis of defect formation. Machine Dynamics Problems. 1995, vol. 12.
  7. Szweda S., Mikuła J., Mikuła S., Magnetic-and-powder Method in Diagnostics of Welded Joints in Powered Roof Supports. IOP Conference Series: Materials Science and Engineering. 2019, vol. 545, pp. 012015. DOI: 10.1088/1757-899X/545/1/012015.
  8. Qin Z., Wu YT. & Lyu SK., A Review of Recent Advances in Design Optimization of Gearbox. Int. J. Precis. Eng. Manuf. 2018, vol. 19, pp. 1753–1762.
  9. Delibaş H., Uzay Ç., & Geren N., Advanced Material Selection Technique For High Strength and Lightweight Spur Gear Design. European Mechanical Science. 2017, vol. 1, no. 4, pp. 133-140.
  10. Boumediri H., Touati S., Debbah Y. et al., Effect of carburizing time treatment on microstructure and mechanical properties of low alloy gear steels. IOP Publishing. Materials Research Express. 2024, vol. 11, pp. 1-10.
  11. Bagaiskov Y., Machining quality improvement and noise reduction of vehicle gears. IOP Conf. Ser.: Mater. Sci. Eng. 2020, vol. 918, pp. 012160.
  12. Mukherjee S., Kumar V., Sarangi S., Bera T. K. Gearbox Fault Diagnosis using Advanced Computational Intelligence. Procedia Computer Science. 2020, vol. 167, pp.1594-1603.
  13. Tuszyński W., Gibała M., Kalbarczyk M. et al. Characteristics of a new test rig and methodology for cyclic testing of gear tooth bending fatigue strength. Tribologia 2019, vol. 283(1), pp. 57-65. https://doi.org/10.5604/01.3001.0013.1438.
  14. Kalbarczyk M., Tuszyński W., Lastra M.A.E. et al. Redukcja tarcia oraz poprawa odporności na zacieranie kół zębatych stożkowych o zębach łukowych poprzez osadzenie powłoki niskotarciowej. Tribologia 2014; vol. 254(2): pp. 67-77.
  15. Tuszyński W., Michalczewski R., Szczerek M. et al. A new scuffing shock test method for the determination of the resistance to scuffing of coated gears. Archives of Civil and Mechanical Engineering (ACME) 2012, vol. 12, pp. 436-445.
  16. Michalczewski R., Kalbarczyk M., Michalak M. et al. Scuffing resistance of coated gears. Tribology: Fundamentals and Advancements 2013, vol. 185, pp. 187-215.
  17. Przybylski W., Burnishing processing technology. WNT. Warszawa 1987.
  18. Łunarski J., Fatigue strength of machine parts after chosen methods of surface machining. Scientific Journals of Rzeszów University of Technology. Mechanics no. 17, Rzeszów 1988.
  19. Mikuła S., Application of shot blasting technology in the production of mining machine components. Scientific Journals of Silesian University of Technology. Mining no. 255, Gliwice 2002.
  20. ISO 10825-1:2022, Gears – Wear and damage to gear teeth. Part 1: Nomenclature and characteristics, Ed. 1, 2022.
  21. PN-91/M-88506, Reducers and motoreducers for general engineering. Damages of gear tooth. Terminology. Polish Standard, Polish Committee for Standardization 1991.
  22. ČSN ISO 10825 (014695), Gears – Wear and damage to gear teeth – Terminology. Czech Standardization Agency, 1997.
  23. Moravec V., Machine and plant construction II. Spur gears, theory, calculation, design, manufacture, control. Publishing Montanex, 2001, pp.165-174. ISBN 80-7225-051-5.
  24. Ding Y., Rieger N.F., Spalling formation mechanism for gears. Wear Vol. 254, Issue 12, 2003, pp. 1307-1317, https://doi.org/10.1016/S0043-1648(03)00126-1
  25. Luo Y., Baddour N., Liang M., Dynamical modeling and experimental validation for tooth pitting and spalling in spur gears. Mechanical Systems and Signal Processing Vol. 119, 2019, pp. 155-181, https://doi.org/10.1016/j.ymssp.2018.09.027
  26. Niemann G., Winter H., Machine elements: Vol. 2: Getriebe Allgemein, Gearbox fundamentals. Springer-Verlag, Spur gears 2013.
  27. Ścieszka S., Żołnierz M., Operation of machines, Part I i II. Silesian University of Technology Publishing House, Gliwice 2012.
  28. Kumagai K., Naito Y., Kurokawa S., Pitting failure of helical gears induced by trochoidal interference and multidirectional, interacting wear. Journal of Advanced Mechanical Design, Systems, and Manufacturing Vol. 14, No. 4, 2020, pp. 1-13, https://doi.org/10.1299/jamdsm.2020jamdsm0060
  29. Miltenović Đ., Tica M., Miltenović A., Banić M., Živković S., Mišković Ž., Pitting of tooth flanks of crossed helical gears made of sintered steel. Transactions of Famena 38(4), 2014, pp. 77-88.
  30. Manual: Failure analysis gears-shafts-bearings-seals. Failure Analysis, Installation & Maintenance. Rexnord Industries USA, 108-010, 1978, pp. 1-20. https://www.rexnord.com/contentitems/techlibrary/documents/108-010_manual
  31. Starzhinskii V.E., Soliterman Y.L., Goman A.M. et al., Forms of damage to gear wheels: Typology and recommendations on prevention. J. Frict. Wear 29, 2008, pp. 340-353, https://doi.org/10.3103/S1068366608050048
  32. Dobrzański L.A., Basis of the shaping of surface and properties of metal materials. Publishing House of Silesian University of Technology. Gliwice 2007.
  33. Schulze V., Bleicher F., Groche P., Guo Y.B., Pyun Y.S., Surface modification by machine hammer peening and burnishing. CIRP Annals Manufacturing Technology. 2016, vol. 65, no. 2, pp. 809-832.
  34. Maximov J.T., Duncheva G.V., Anchev A.P. et al., Slide burnishing-review and prospects. The International Journal of Advanced Manufacturing Technology. 2019, vol. 104, pp. 785-801.
  35. Raza A., Kumar S., A critical review of tool design in burnishing process. Tribology International. 2022, vol. 174, pp. 107717.
  36. Świetlicki A., Szala M., Walczak M., Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials – A Short Review. Materials.  2022, vol. 15, 2476, pp. 1-26.
  37. Zaleski K., Dynamic burnishing technology. Publishing House of Lublin University of Technology. Lublin 2018.
  38. Nakonieczny A., Dynamic surface plastic processing – shot peening. Institute of Precision Mechanics. Warszawa 2002.
  39. Kolman R., Mechanical reinforcement of machine parts surfaces. WNT. Warszawa 1965.
  40. Szulc S., Stefko A., Surface treatment of machine parts. WNT. Warszawa 1976.
  41. Korzyński, M., Device for dynamic burnishing of external surfaces of cylindrical objects. Patent 139508.
  42. Łunarski J., Wójcik A., Zielecki W., A device for strengthening metal objects by pneumatic shot peening. Patent 150864.
  43. Mikuła J., Grzegorzek W., Adamecki D., Mikuła S., Skoć A., Device for strengthening the tooth working surfaces of gears with arcuate tooth trace. Patent P.429855. Published 04.12.2023.
DOI: https://doi.org/10.2478/mspe-2025-0050 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 502 - 508
Submitted on: Mar 1, 2025
Accepted on: Oct 1, 2025
Published on: Nov 3, 2025
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Wojciech Grzegorzek, Daniel Adamecki, Stanisław Mikuła, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.