References
- N. Hu, J.X. Shi, C. Chen, et al. “Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury.” Nat Commun., vol. 15, 9580, 2024.
- H. Yadav and S. Maini. “Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities.” Multimed Tools Appl., vol. 82, pp. 47003-47047, 2023.
- D.M. Lyreskog, H. Zohny, S.P. Mann, et al. “Decentralising the Self – Ethical Considerations in Utilizing Decentralised Web Technology for Direct Brain Interfaces.” Sci Eng Ethics, vol. 30, no. 28, 2024.
- D. Vignesh, S. He and S. Banerjee. “A review on the complexities of brain activity: insights from nonlinear dynamics in neuroscience.” Nonlinear Dyn., vol. 113, pp. 4531-4552, 2025.
- X. Tang, H. Shen, S. Zhao, et al. “Flexible brain-computer interfaces.” Nat Electron., vol. 6, pp. 109-118, 2023.
- K.M. Patrick-Krueger, I. Burkhart and J.L. Contreras-Vidal. “The state of clinical trials of implantable brain-computer interfaces.” Nat Rev Bioeng., vol. 3, pp. 50-67, 2025.
- T. Garbe. “The Presentation of Brain-computer Interfaces As Autonomy-enhancing Therapy Products.” Nanoethics, vol. 18, no. 13, 2024.
- Z. Zhang, Y. Chen, X. Zhao, et al. “A review of ethical considerations for the medical applications of brain-computer interfaces.” Cogn Neurodyn, vol. 18, pp. 3603-3614, 2024.
- “ISO/IEC TR 27599:2025 Information technology – Brain-computer interfaces – Use cases.” Available from: https://www.iso.org/standard/80419.html
- B. Zhang, D. Wei, G. Yan, et al. “Spatial-Temporal EEG Fusion Based on Neural Network for Major Depressive Disorder Detection.” Interdiscip Sci Comput Life Sci, vol. 15, pp. 542-559, 2023.
- Z. Huang, C. Jowers, D. Kent, D., et al. “The implementation of Industry 4.0 in manufacturing: from lean manufacturing to product design.” Int J Adv Manuf Technol, vol. 121, pp. 3351-3367, 2022.
- T. Garbe. “The Presentation of Brain-computer Interfaces As Autonomy-enhancing Therapy Products.” Nanoethics, vol. 18, no. 13, 2024.
- X. Sun and B. Ye. “The functional differentiation of brain-computer interfaces (BCIs) and its ethical implications.” Humanit Soc Sci Commun, vol. 10, 878, 2023.
- G. Wang, G. Marcucci, B. Peters, et al. “Human-centred physical neuromorphics with visual brain-computer interfaces.” Nat Commun, vol. 15, 6393, 2024.
- B. Maiseli, A.T. Abdalla, L.V. Massawe, et al. “Brain-computer interface: trend, challenges, and threats.” Brain Inf, vol. 10, no. 20, 2023.
- N.D. Schiff, M. Diringer, K. Diserens, et al. “Brain-Computer Interfaces for Communication in Patients with Disorders of Consciousness: A Gap Analysis and Scientific Roadmap.” Neurocrit Care, vol. 41, pp. 129-145, 2024.
- X. Jiang, L. Meng, S. Li, et al. “Active poisoning: efficient backdoor attacks on transfer learning-based brain-computer interfaces.” Sci. China Inf. Sci., vol. 66, 182402, 2023.
- C. Poppe and B.S. Elger. “Brain-Computer Interfaces, Completely Locked-In State in Neurodegenerative Diseases, and End-of-Life Decisions.” Bioethical Inquiry, vol. 21, pp. 19-27, 2024.
- K. Erat, E.B. Şahin, F. Doğan, et al. “Emotion recognition with EEG-based brain-computer interfaces: a systematic literature review.” Multimed Tools Appl, vol. 83, pp. 79647-79694, 2024.
- Z. Yan, P. Liu, H. Zhou, H., et al. “Brain-computer Interaction in the Smart Era.” Curr Med Sci, vol. 44, pp. 1123-1131, 2024.
- J.I. Buitenweg, J.M. Murre and K.R. Ridderinkhof. “Brain training in progress: A review of trainability in healthy seniors.” Front. Hum. Neurosci, vol. 6, 183, 2012.
- H.K. Hausman, et al. “The role of resting-state network functional connectivity in cognitive aging.” Front Aging Neurosci, vol. 12, 177, 2020.
- A. Rouzitalab, C.B. Boulay, J. Park, et al. “Intracortical brain-computer interfaces in primates: a review and outlook.” Biomed. Eng Lett, vol. 13, pp. 375-390, 2023.
- R. Sharma and H.K. Meena. “Emerging Trends in EEG Signal Processing: A Systematic Review.” SN Comput Sci, vol. 5, 415, 2024.
- S. Jain and R. Srivastava. “Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis.” Brain Topogr, vol. 38, 33, 2025.
- E. Canny, M.J. Vansteensel, S.M.A. van der Salm, et al. “Boosting brain-computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndrome.” J Neuro Engineering Rehabil, vol. 20, 157, 2023.
- Q. He, J. He, Y. Yang, et al. “Brain-Computer Interfaces in Disorders of Consciousness.” Neurosci Bull, vol. 39, pp. 348-352, 2023.
- R. Pillalamarri and U. Shanmugam. “A review on EEG-based multimodal learning for emotion recognition.” Artif Intell Rev, vol. 58, 131, 2025.
- S. Shang, Y. Shi, Y. Zhang, et al. “Artificial intelligence for brain disease diagnosis using electroencephalogram signals.” J Zhejiang Univ Sci B, vol. 25, pp. 914-940, 2024.
- Y. Wang, S. Liu, H. Wang, et al. “Neuron devices: emerging prospects in neural interfaces and recognition.” Microsyst Nanoeng, vol. 8, 128, 2022.
- Y.J. Zhang, Z.F. Yu, J.K. Liu, et al. “Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches.” Mach Intell Res, vol. 19, pp. 350-365, 2022.
- K.C. Davis, B. Meschede-Krasa, I. Cajigas, et al. “Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury.” J NeuroEngineering Rehabil, vol. 19, 53, 2022.
- S.S. Joudar, A.S. Albahri, R.A. Hamid, et al. “Artificial intelligence-based approaches for improving the diagnosis, triage, and prioritization of autism spectrum disorder: a systematic review of current trends and open issues.” Artif Intell Rev, vol. 56, Suppl. 1, pp. 53-117, 2023.
- Y. Xing, Y. Yang, K. Yang, et al. “Intelligent sensing devices and systems for personalized mental health.” Med-X, vol. 3, 10, 2025.
- N.F. Ramsey and M.J. Vansteensel. “The expanding repertoire of brain-computer interfaces.” Nat Med, vol. 31, pp. 31-32, 2025.
- G. Sala and F. Gobet. “Cognitive training does not enhance general cognition.” Trends Cogn Sci, vol. 23, no. 1, pp. 9-20, 2019.
- L. Nguyen, K. Murphy and G. Andrews. “Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training.” Ageing Res Rev, vol. 53, 100912, 2019.
- W. Weng, et al. “The transfer effects of cognitive training on working memory among Chinese older adults with mild cognitive impairment: A randomized controlled trial.” Front Hum Neurosci, vol. 11, 212, 2019.
- L. Nguyen, K. Murphy and G. Andrews. “Immediate and long-term efficacy of executive functions cognitive training in older adults: A systematic review and meta-analysis.” Psychol Bull, vol. 145, no. 7, pp. 698-733, 2019.
- G. Sala, et al. “Near and far transfer in cognitive training: A second-order meta-analysis.” Collabra Psychol, vol. 5, no. 1, 2019.
- J. Rogala, E. Kublik, R. Krauz and A. Wróbel. “Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance.” Sci Rep, vol. 10, 5064, 2020.
- O.Y. Chén, et al. “Resting-state brain information flow predicts cognitive flexibility in humans.” Sci Rep, vol. 9, 3879, 2019.
- H. Haken. Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior and Cognition. New York: Springer, vol. 67, 1996.
- V. Zaloga, K. Dyadyura, I. Rybalka, I., et al. “Enhancing efficiency by implementation of integrated management system in order to align organisational culture and daily practice.” Management Systems in Production Engineering, vol. 28, no. 4, pp. 304-311, 2020.
- D. Chen, Z. Zhao, J. Shi, J. et al. Harnessing the sensing and stimulation function of deep brain-machine interfaces: a new dawn for overcoming substance use disorders. Transl Psychiatry, vol. 14, 440, 2024.
- L. Sukhodub, A. Panda, K. Dyadyura, et al. “The design criteria for biodegradable magnesium alloy implants.” MM Science Journal, pp. 2673-2679, 2018. DOI 10.17973/MMSJ.2018_12_201867.
- A. Panda, V.M. Anisimov, V.V. Anisimov, et al. “Increasing of wear resistance of linear block-polyurethanes by thermal processing methods.” MM Science Journal, vol. 21, pp. 4731-4735, 2021. http://doi.org/10.17973/MMSJ.2021_10_2021018.
- I. Pandová, M. Rimár, A. Panda, et al. “A study of using natural sorbent to reduce iron cations from aqueous solutions.” Int J Environ Res and Pub Health, vol. 17, 2020. https://doi.org/10.3390/ijerph17103686.
- M. Harničárová, J. Valíček, M. Kušnerová, et al. “Study of the influence of the structural grain size on the mechanical properties of technical materials.” Materialwissenschaft und Werkstofftechnik, vol. 5, 2019. https://doi.org/10.1002/mawe.201800177.
- L. Sukhodub, A. Panda, L. Sukhodub, et al. “Hydroxyapatite and zinc oxide based two-layer coating, deposited on Ti6Al4V substrate.” MM Science Journal, pp. 3494-3499, 2019. DOI: 10.17973/MMSJ.2019_12_2019030
- A. Panda, K. Dyadyura, J. Valíček, et al. “Ecotoxicity Study of New Composite Materials Based on Epoxy Matrix DER-331 Filled with Biocides Used for Industrial Applications.” Polymers, 2022, 14, 3275. https://doi.org/10.3390/polym14163275.