Have a personal or library account? Click to login
Analysis of Spatio-Temporal Eeg Structures For Application In Technology Brain-Computer Interfaces (Bci) Cover

Analysis of Spatio-Temporal Eeg Structures For Application In Technology Brain-Computer Interfaces (Bci)

Open Access
|Nov 2025

References

  1. N. Hu, J.X. Shi, C. Chen, et al. “Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury.” Nat Commun., vol. 15, 9580, 2024.
  2. H. Yadav and S. Maini. “Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities.” Multimed Tools Appl., vol. 82, pp. 47003-47047, 2023.
  3. D.M. Lyreskog, H. Zohny, S.P. Mann, et al. “Decentralising the Self – Ethical Considerations in Utilizing Decentralised Web Technology for Direct Brain Interfaces.” Sci Eng Ethics, vol. 30, no. 28, 2024.
  4. D. Vignesh, S. He and S. Banerjee. “A review on the complexities of brain activity: insights from nonlinear dynamics in neuroscience.” Nonlinear Dyn., vol. 113, pp. 4531-4552, 2025.
  5. X. Tang, H. Shen, S. Zhao, et al. “Flexible brain-computer interfaces.” Nat Electron., vol. 6, pp. 109-118, 2023.
  6. K.M. Patrick-Krueger, I. Burkhart and J.L. Contreras-Vidal. “The state of clinical trials of implantable brain-computer interfaces.” Nat Rev Bioeng., vol. 3, pp. 50-67, 2025.
  7. T. Garbe. “The Presentation of Brain-computer Interfaces As Autonomy-enhancing Therapy Products.” Nanoethics, vol. 18, no. 13, 2024.
  8. Z. Zhang, Y. Chen, X. Zhao, et al. “A review of ethical considerations for the medical applications of brain-computer interfaces.” Cogn Neurodyn, vol. 18, pp. 3603-3614, 2024.
  9. “ISO/IEC TR 27599:2025 Information technology – Brain-computer interfaces – Use cases.” Available from: https://www.iso.org/standard/80419.html
  10. B. Zhang, D. Wei, G. Yan, et al. “Spatial-Temporal EEG Fusion Based on Neural Network for Major Depressive Disorder Detection.” Interdiscip Sci Comput Life Sci, vol. 15, pp. 542-559, 2023.
  11. Z. Huang, C. Jowers, D. Kent, D., et al. “The implementation of Industry 4.0 in manufacturing: from lean manufacturing to product design.” Int J Adv Manuf Technol, vol. 121, pp. 3351-3367, 2022.
  12. T. Garbe. “The Presentation of Brain-computer Interfaces As Autonomy-enhancing Therapy Products.” Nanoethics, vol. 18, no. 13, 2024.
  13. X. Sun and B. Ye. “The functional differentiation of brain-computer interfaces (BCIs) and its ethical implications.” Humanit Soc Sci Commun, vol. 10, 878, 2023.
  14. G. Wang, G. Marcucci, B. Peters, et al. “Human-centred physical neuromorphics with visual brain-computer interfaces.” Nat Commun, vol. 15, 6393, 2024.
  15. B. Maiseli, A.T. Abdalla, L.V. Massawe, et al. “Brain-computer interface: trend, challenges, and threats.” Brain Inf, vol. 10, no. 20, 2023.
  16. N.D. Schiff, M. Diringer, K. Diserens, et al. “Brain-Computer Interfaces for Communication in Patients with Disorders of Consciousness: A Gap Analysis and Scientific Roadmap.” Neurocrit Care, vol. 41, pp. 129-145, 2024.
  17. X. Jiang, L. Meng, S. Li, et al. “Active poisoning: efficient backdoor attacks on transfer learning-based brain-computer interfaces.” Sci. China Inf. Sci., vol. 66, 182402, 2023.
  18. C. Poppe and B.S. Elger. “Brain-Computer Interfaces, Completely Locked-In State in Neurodegenerative Diseases, and End-of-Life Decisions.” Bioethical Inquiry, vol. 21, pp. 19-27, 2024.
  19. K. Erat, E.B. Şahin, F. Doğan, et al. “Emotion recognition with EEG-based brain-computer interfaces: a systematic literature review.” Multimed Tools Appl, vol. 83, pp. 79647-79694, 2024.
  20. Z. Yan, P. Liu, H. Zhou, H., et al. “Brain-computer Interaction in the Smart Era.” Curr Med Sci, vol. 44, pp. 1123-1131, 2024.
  21. J.I. Buitenweg, J.M. Murre and K.R. Ridderinkhof. “Brain training in progress: A review of trainability in healthy seniors.” Front. Hum. Neurosci, vol. 6, 183, 2012.
  22. H.K. Hausman, et al. “The role of resting-state network functional connectivity in cognitive aging.” Front Aging Neurosci, vol. 12, 177, 2020.
  23. A. Rouzitalab, C.B. Boulay, J. Park, et al. “Intracortical brain-computer interfaces in primates: a review and outlook.” Biomed. Eng Lett, vol. 13, pp. 375-390, 2023.
  24. R. Sharma and H.K. Meena. “Emerging Trends in EEG Signal Processing: A Systematic Review.” SN Comput Sci, vol. 5, 415, 2024.
  25. S. Jain and R. Srivastava. “Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis.” Brain Topogr, vol. 38, 33, 2025.
  26. E. Canny, M.J. Vansteensel, S.M.A. van der Salm, et al. “Boosting brain-computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndrome.” J Neuro Engineering Rehabil, vol. 20, 157, 2023.
  27. Q. He, J. He, Y. Yang, et al. “Brain-Computer Interfaces in Disorders of Consciousness.” Neurosci Bull, vol. 39, pp. 348-352, 2023.
  28. R. Pillalamarri and U. Shanmugam. “A review on EEG-based multimodal learning for emotion recognition.” Artif Intell Rev, vol. 58, 131, 2025.
  29. S. Shang, Y. Shi, Y. Zhang, et al. “Artificial intelligence for brain disease diagnosis using electroencephalogram signals.” J Zhejiang Univ Sci B, vol. 25, pp. 914-940, 2024.
  30. Y. Wang, S. Liu, H. Wang, et al. “Neuron devices: emerging prospects in neural interfaces and recognition.” Microsyst Nanoeng, vol. 8, 128, 2022.
  31. Y.J. Zhang, Z.F. Yu, J.K. Liu, et al. “Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches.” Mach Intell Res, vol. 19, pp. 350-365, 2022.
  32. K.C. Davis, B. Meschede-Krasa, I. Cajigas, et al. “Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury.” J NeuroEngineering Rehabil, vol. 19, 53, 2022.
  33. S.S. Joudar, A.S. Albahri, R.A. Hamid, et al. “Artificial intelligence-based approaches for improving the diagnosis, triage, and prioritization of autism spectrum disorder: a systematic review of current trends and open issues.” Artif Intell Rev, vol. 56, Suppl. 1, pp. 53-117, 2023.
  34. Y. Xing, Y. Yang, K. Yang, et al. “Intelligent sensing devices and systems for personalized mental health.” Med-X, vol. 3, 10, 2025.
  35. N.F. Ramsey and M.J. Vansteensel. “The expanding repertoire of brain-computer interfaces.” Nat Med, vol. 31, pp. 31-32, 2025.
  36. G. Sala and F. Gobet. “Cognitive training does not enhance general cognition.” Trends Cogn Sci, vol. 23, no. 1, pp. 9-20, 2019.
  37. L. Nguyen, K. Murphy and G. Andrews. “Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training.” Ageing Res Rev, vol. 53, 100912, 2019.
  38. W. Weng, et al. “The transfer effects of cognitive training on working memory among Chinese older adults with mild cognitive impairment: A randomized controlled trial.” Front Hum Neurosci, vol. 11, 212, 2019.
  39. L. Nguyen, K. Murphy and G. Andrews. “Immediate and long-term efficacy of executive functions cognitive training in older adults: A systematic review and meta-analysis.” Psychol Bull, vol. 145, no. 7, pp. 698-733, 2019.
  40. G. Sala, et al. “Near and far transfer in cognitive training: A second-order meta-analysis.” Collabra Psychol, vol. 5, no. 1, 2019.
  41. J. Rogala, E. Kublik, R. Krauz and A. Wróbel. “Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance.” Sci Rep, vol. 10, 5064, 2020.
  42. O.Y. Chén, et al. “Resting-state brain information flow predicts cognitive flexibility in humans.” Sci Rep, vol. 9, 3879, 2019.
  43. H. Haken. Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior and Cognition. New York: Springer, vol. 67, 1996.
  44. V. Zaloga, K. Dyadyura, I. Rybalka, I., et al. “Enhancing efficiency by implementation of integrated management system in order to align organisational culture and daily practice.” Management Systems in Production Engineering, vol. 28, no. 4, pp. 304-311, 2020.
  45. D. Chen, Z. Zhao, J. Shi, J. et al. Harnessing the sensing and stimulation function of deep brain-machine interfaces: a new dawn for overcoming substance use disorders. Transl Psychiatry, vol. 14, 440, 2024.
  46. L. Sukhodub, A. Panda, K. Dyadyura, et al. “The design criteria for biodegradable magnesium alloy implants.” MM Science Journal, pp. 2673-2679, 2018. DOI 10.17973/MMSJ.2018_12_201867.
  47. A. Panda, V.M. Anisimov, V.V. Anisimov, et al. “Increasing of wear resistance of linear block-polyurethanes by thermal processing methods.” MM Science Journal, vol. 21, pp. 4731-4735, 2021. http://doi.org/10.17973/MMSJ.2021_10_2021018.
  48. I. Pandová, M. Rimár, A. Panda, et al. “A study of using natural sorbent to reduce iron cations from aqueous solutions.” Int J Environ Res and Pub Health, vol. 17, 2020. https://doi.org/10.3390/ijerph17103686.
  49. M. Harničárová, J. Valíček, M. Kušnerová, et al. “Study of the influence of the structural grain size on the mechanical properties of technical materials.” Materialwissenschaft und Werkstofftechnik, vol. 5, 2019. https://doi.org/10.1002/mawe.201800177.
  50. L. Sukhodub, A. Panda, L. Sukhodub, et al. “Hydroxyapatite and zinc oxide based two-layer coating, deposited on Ti6Al4V substrate.” MM Science Journal, pp. 3494-3499, 2019. DOI: 10.17973/MMSJ.2019_12_2019030
  51. A. Panda, K. Dyadyura, J. Valíček, et al. “Ecotoxicity Study of New Composite Materials Based on Epoxy Matrix DER-331 Filled with Biocides Used for Industrial Applications.” Polymers, 2022, 14, 3275. https://doi.org/10.3390/polym14163275.
DOI: https://doi.org/10.2478/mspe-2025-0048 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 486 - 493
Submitted on: Apr 1, 2025
|
Accepted on: Oct 1, 2025
|
Published on: Nov 3, 2025
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Irina Dyadyura, Andrii Diadiura, Pavlo Prokopovich, Martin Piroh, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.