Have a personal or library account? Click to login
Possibilities of Increasing the Efficiency of Production Systems by Using an Additional Capacitive Element Cover

Possibilities of Increasing the Efficiency of Production Systems by Using an Additional Capacitive Element

Open Access
|Aug 2025

References

  1. Jain A., Bhatti R., Singh H. Total productive maintenance (TPM) implementation practice: A literature review and directions. International Journal of Lean Six Sigma 2014; 5 (3): pp. 293-323, http://doi.org//10.1108/IJLSS-06-2013-0032.
  2. Jain A., Bhatti R., Singh H. OEE enhancement in SMEs through mobile maintenance: a TPM concept. International Journal of Quality & Reliability Management 2015; 32 (5): pp. 503-516, http://doi.org/10.1108/IJQRM-05-2013-0088.
  3. Michlowicz E. Assessment of the modernized production system through selected TPM method indicators. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24 (4): pp. 677-686, http://doi.org/10.17531/ein.2022.4.8.
  4. Nyhuis P., Wiendhal H-P. Fundamentals of Production Logistics. Theory, Tools and Applications. Springer – Verlag, Berlin Heidelberg 2009.
  5. Pascal D. Lean Production Simplified: A Plain-Language Guide to the World’s Most Powerful Production System. CRC Press Taylor & Francis Group, Boca Raton 2015.
  6. Jardzioch A., Kalinowski K., Kłos S. Organizacja i planowanie produkcji. PWE, Warszawa 2023.
  7. Nowakowski T. Niezawodność systemów logistycznych. Oficyna Wydawnicza Pol. Wrocławskiej, Wrocław 2011.
  8. Pamuła W. Niezawodność i bezpieczeństwo. Wybór zagadnień. Wydawnictwo Pol. Śląskiej, Gliwice 2011.
  9. Kaźmierczak J. Eksploatacja systemów technicznych. Wyd. Pol. Śląskiej, Gliwice 2000.
  10. Friederich J., Lazarova-Molnar S. Reliability assessment of manufacturing systems: A comprehensive overview, challenges and opportunities. Journal of Manufacturing Systems 2024; 72: pp. 38-58, https://doi.org/10.1016/j.jmsy.2023.11.001
  11. Schäfer L, Günther M, Martin A, Lüpfert M, Mandel C, Rapp S, et al. Systematics for an integrative modelling of product and production system. Procedia CIRP 2023; 118(04): 104-9, http://dx.doi.org/10.1016/j.procir.2023.06.019.
  12. Vogl GW, Weiss BA, Helu M. A review of diagnostic and prognostic capabilities and best practices for manufacturing. J Intell Manuf 2019; 30(1): pp. 79-95, http://dx.doi.org/10.1007/s10845-016-1228-8.
  13. Rusin A., Baryshew Ya. Improving Equipment Reliability and System Maintenance and Repair Efficiency. Civil Engineering Journal 2019; 5(8), DOI:10.28991/cej-2019-03091372.
  14. Syan C, Ramsoobag G. Maintenance applications of multi-criteria optimization: A review. Reliability Engineering & System Safety 2019; 190: 106520, https://doi.org/10.1016/j.ress.2019.106520.
  15. Chlebus M, Werbińska-Wojciechowska S. Issues on production process reliability assessment – Review. Res Logist Prod 2016; 6(6): pp. 481-97. http://dx.doi.org/10.21008/j.2083-4950.2016.6.6.1.
  16. Chlebus M, Werbińska-Wojciechowska S. Assessment methods of production processes reliability – state of the art. J KONBiN 2017; 41(1): pp. 247-76. http://dx.doi.org/10.1515/jok-2017-0013.
  17. Jia S, Yan C, Kang J, Xie H, Wei Y. Optimal allocation of reliability improvement target based on multiple correlation failures and risk uncertainty. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023; 25(1):8, http://doi.org/10.17531/ein.2023.1.8.
  18. Barker T. J. The Impact of Reliability in Conceptual Design – An Integrated Trade-off Analysis. Graduate Theses and Dissertations Retrieved. Univ. of Arkansas 2022, https://scholarworks.uark.edu/etd/4449.
  19. Arena D., Kiritsis, D. A Methodological Framework for Ontology-Driven Instantiation of Petri Net Manufacturing Process Models. In: Ríos, J., Bernard, A., Bouras, A., Foufou, S. (eds) Product Lifecycle Management and the Industry of the Future. PLM 2017. IFIP Advances in Information and Communication Technology, vol 517. Springer, Cham, https://doi.org/10.1007/978-3-319-72905-3_49.
  20. Nabi HZ, Aized T. Performance evaluation of a carousel configured multiple products flexible manufacturing system using Petri net. Oper Manage Res 2020; 13(1-2): pp. 109-29. http://dx.doi.org/10.1007/s12063-020-00151-2.
  21. Yan R, Jackson LM, Dunnett SJ. Automated guided vehicle mission reliability modelling using a combined fault tree and Petri net approach. Int J Adv Manuf Technol 2017; 92(5): pp. 1825-37, http://dx.doi.org/10.1007/s00170-017-0175-7.
  22. Schäfer L, Kochendörfer P, May M.C, Lanza G. Planning and multi-objective optimization of production systems by means of assembly line balancing. Procedia CIRP 2023; 120(3): pp. 1125-30, http://dx.doi.org/10.1016/j.procir.2023.09.136.
  23. Schäfer L., Tse S., May M.C., Lanza G. Assisted production system planning by means of complex robotic assembly line balancing. Journal of Manufacturing Systems 2025; 78: pp. 109-123, https://doi.org/10.1016/j.jmsy.2024.11.008.
  24. Valet A, Altenmüller T, Waschneck B, May MC, Kuhnle A, Lanza G. Opportunistic maintenance scheduling with deep reinforcement learning. J Manuf Syst 2022; 64: pp. 518-34, http://dx.doi.org/10.1016/j.jmsy.2022.07.016.
  25. Kim D, Kim K O. Optimal allocation of reliability improvement target under dependent component failures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2022; 236(5): pp. 866-878, DOI:10.1177/1748006X211035635.
  26. Alsina E.F., Chica M., Trawiński K. et al. On the use of machine learning methods to predict component reliability from data-driven industrial case studies. Int J Adv Manuf Technol 2018; 94: pp. 2419-2433, https://doi.org/10.1007/s00170-017-1039-x.
  27. Antosz K, Jasiulewicz-Kaczmarek M, Paśko Ł, Zhang C, Wang S. Application of machine learning and rough set theory in lean maintenance decision support system development. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): pp. 695-708, http://doi.org/10.17531/ein.2021.4.12.
  28. Gola A. Reliability analysis of reconfigurable manufacturing system structures using computer simulation methods. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (1): pp. 90-102, http://dx.doi.org/10.17531/ein.2019.1.11.
  29. Michlowicz E., Wojciechowski J. A method for evaluating and upgrading systems with parallel structures with forced redundancy. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (4): pp. 770-776, http://doi.org/10.17531/ein.2021.4.19.
  30. Idziaszek Z. Method of analysis of productivity with an innovative model of the working capability of the object in the body (C) for the new resource allocation on inherent and non-inherent. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (4): pp. 671-681,http://dx.doi.org/10.17531/ein.2018.4.18.
  31. Coit D. W, Zio E. The evolution of system reliability optimization. Reliability Engineering & System Safety 2019; 192: 106259, https://doi.org/10.1016/j.ress.2018.09.008.
  32. Jia S, Yan C, Kang J, Xie H, Wei Y. Optimal allocation of reliability improvement target based on multiple correlation failures and risk uncertainty. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023; 25(1):8, http://doi.org/10.17531/ein.2023.1.8.
  33. Yu H, Zhang G, Ran Y, et al. A comprehensive and practical reliability allocation method considering failure effects and reliability costs. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (2): pp. 244-251, http://dx.doi.org/10.17531/ein.2018.2.09.
  34. Rogalewicz M, Kujawińska A, Feledziak A. Ensuring the reliability and reduction of quality control costs by minimizing process variability. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2023: 25(2), DOI: https://doi.org/10.17531/ein/162626.
  35. Kim D, Kim K O. Optimal allocation of reliability improvement target under dependent component failures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2022; 236(5): 866-878, DOI:10.1177/1748006X211035635.
  36. Amjath M., Kerbache L., Smith J.M., Elomri A. Optimisation of buffer allocations in manufacturing systems:A study on intra and outbound logistics systems using finite queueing networks. Appl. Sci. 2023; 13: 9525, https://doi.org/10.3390/app13179525.
  37. Kłos, S.; Trebuna, P. The Impact of the Availability of Resources, the Allocation of Buffers and Number of Workers on the Effectiveness of an Assembly Manufacturing System. Manag. Prod. Eng. Rev. 2017; 8: pp. 40-49, DOI:10.1515/mper-2017-0027.
  38. Kłos S. Analiza dyskretnych procesów produkcyjnych oparta na metodzie symulacji komputerowej. Badanie wpływu alokacji buforów i zasobów produkcyjnych na efektywność systemów wytwórczych. Unwersytet Zielonogórski, Zielona Góra 2023. https://doi.org/10.59444/2023MONaKlo.
  39. Huang M.G., Chang P.L., Chou Y.Ch.. Buffer allocation in flow-shop-type production systems with general arrival and service patterns. Computers & Operations Research 29 (2002) pp. 103-121. DOI:10.1016/S0305-0548(00)00060-5
  40. Cao Y, Liu S, Fang Z, et al. Reliability improvement allocation method considering common cause failures. IEEE Transactions on Reliability 2019; 69(2): pp. 571-580
  41. Cao Y, Liu S, Fang Z, et al. Reliability allocation for series‐parallel systems subject to potential propagated failures. Quality and Reliability Engineering International 2020; 36(2): pp. 565-576, https://doi.org/10.1002/qre.2591
DOI: https://doi.org/10.2478/mspe-2025-0038 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 393 - 400
Submitted on: Mar 1, 2025
|
Accepted on: Jul 1, 2025
|
Published on: Aug 4, 2025
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Edward Michlowicz, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.