Have a personal or library account? Click to login

Virtual Machining of Total Knee Replacement Products Based on Finite Element Analysis (FEA) and Re-Design Optimization by ISO 14243

Open Access
|Apr 2025

References

  1. X.-H. Wang, H. Li, X. Dong, F. Zhao, C.-K. Cheng, ‘Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses’, Clinical Biomechanics, vol. 63, pp. 34-40, 2019, doi: 10.1016/j.clinbiomech.2019.02.008.
  2. P.F. Sharkey, P.M. Lichstein, C. Shen, A.T. Tokarski, J. Parvizi, ‘Why Are Total Knee Arthroplasties Failing Today – Has Anything Changed After 10 Years?’, J Arthroplasty, vol. 29, no. 9, pp. 1774-1778, 2014, doi: 10.1016/j.arth.2013.07.024.
  3. D. Darmanto, R. Novriansyah, P. W. Anggoro, R. Ismail, J. Jamari, A. P. Bayuseno, ‘A review on flexion angle in high-flexion total knee arthroplasty for indonesian’s need’, Front Mech Eng, vol. 8, 2022, doi: 10.3389/fmech.2022.1049796.
  4. M. Hoffman, ‘Anatomy of the Knee’, https://www.webmd.com/pain-management/knee-pain/knee-pain-overview.
  5. Orthoinfo. Revision, ‘Revision Total Knee Replacement’, https://orthoinfo.aaos.org/en/treatment/revision-total-knee-replacement/.
  6. Y. Sandeep Kumar, R. Rao KVS, S.R. Yalamalle, S.M. Venugopal, S. Krishna, ‘Applications of 3D printing in TKR Pre surgical planning for Design Optimization – A Case Study’, Mater Today Proc, vol. 5, no. 9, pp. 18833-18838, 2018, doi: 10.1016/j.matpr.2018.06.230.
  7. A.H. Saputro, T. Hidayat, ‘Analisa Poros Alat Uji Keausan Untuk Sistem Kontak Two-Disc Dengan Menggunakan Metode Elemen HINGGA’, Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 8, no. 1, pp. 283-290, 2017, doi: 10.24176/simet.v8i1.962.
  8. Y. Setyoadi, R. Ismail, J. Jamari, A.P. Bayuseno, R. Novriansyah, H. Prawibowo, ‘Reverse Engineering Artificial Knee Joint using 3D Scanning’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390918.
  9. F. Djoudi, ‘3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model’, J Orthop, vol. 10, no. 4, pp. 155-161, 2013, doi: 10.1016/j.jor.2013.09.009.
  10. Y.-G. Koh, J.-A. Lee, K.-T. Kang, ‘Prediction of Wear on Tibial Inserts Made of UHMWPE, PEEK, and CFR-PEEK in Total Knee Arthroplasty Using Finite-Element Analysis’, Lubricants, vol. 7, no. 4, p. 30, Apr. 2019, doi: 10.3390/lubricants7040030.
  11. X.-H. Wang, H. Li, X. Dong, F. Zhao, C.-K. Cheng, ‘Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses’, Clinical Biomechanics, vol. 63, pp. 34-40, 2019, doi: 10.1016/j.clinbiomech.2019.02.008.
  12. H. Prawibowo, F.T. Putri, R. Ismail, M. Tauviqirrahman, R. Novriansyah, Y. Setyoadi, ‘Finite Element Analysis on a Bionic Foot Prosthesis Model during Walking Gait Phases’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390945.
  13. FDA, ‘https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/knee-joint-patellofemorotibial-andfemorotibial-metalpolymer-porous-coated-uncementedprostheses’, FDA.
  14. Endolab, ‘https://www.endolab.org/simulator-knee-implants.asp’, Endolab.
  15. G. Bergmann et al., ‘Standardized Loads Acting in Knee Implants’, PLoS One, vol. 9, no. 1, p. e86035, Jan. 2014, doi: 10.1371/journal.pone.0086035.
  16. Y. Setyoadi, R. Ismail, J. Jamari, A.P. Bayuseno, R. Novriansyah, H. Prawibowo, ‘Reverse Engineering Artificial Knee Joint using 3D Scanning’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390918.
  17. B. Innocenti, L. Labey, A. Kamali, W. Pascale, S. Pianigiani, ‘Development and Validation of a Wear Model to Predict Polyethylene Wear in a Total Knee Arthroplasty: A Finite Element Analysis’, Lubricants, vol. 2, no. 4, pp. 193-205, Nov. 2014, doi: 10.3390/lubricants2040193.
  18. T. Otani, L.A. Whiteside, S.E. White, D.S. McCarthy, ‘Effects of femoral component material properties on cementless fixation in total hip arthroplasty’, J Arthroplasty, vol. 8, no. 1, pp. 67-74, Feb. 1993, doi: 10.1016/S0883-5403(06)80110-5.
  19. B. Gervais, A. Vadean, M. Raison, M. Brochu, ‘Failure analysis of a 316L stainless steel femoral orthopedic implant’, Case Stud Eng Fail Anal, vol. 5-6, pp. 30-38, Apr. 2016, doi: 10.1016/j.csefa.2015.12.001.
  20. A. Markopoulos, N. Galanis, N. Karkalos, D. Manolakos, ‘Precision CNC Machining of Femoral Component of Knee Implant: A Case Study’, Machines, vol. 6, no. 1, p. 10, Mar. 2018, doi: 10.3390/machines6010010.
  21. L. Bauer et al., ‘Different ISO standards’ wear kinematic profiles change the TKA inlay load’, Applied Sciences (Switzerland), vol. 11, no. 7, Apr. 2021, doi: 10.3390/app11073161.
  22. X.H. Wang et al., ‘The impact of variations in input directions according to ISO 14243 on wearing of knee prostheses’, PLoS One, vol. 13, no. 10, Oct. 2018, doi: 10.1371/journal.pone.0206496.
  23. A.P. Markopoulos, N.I. Galanis, N.E. Karkalos, D.E. Manolakos, ‘Precision CNC machining of femoral component of knee implant: A case study’, Machines, vol. 6, no. 1, 2018, doi: 10.3390/MACHINES6010010.
  24. M.A. Kumbhalkar, P.H. Jaiswal, H.M. Bansod, ‘Design and manufacturing of knee joint by CAD/CAM and rapid prototyping’, Journal of the Institution of Engineers (India): Mechanical Engineering Division, vol. 92, no. APRIL, pp. 25-28, 2011.
DOI: https://doi.org/10.2478/mspe-2025-0025 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 258 - 267
Submitted on: Nov 1, 2024
Accepted on: Apr 1, 2025
Published on: Apr 27, 2025
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Yuris Setyoadi, Rifky Ismail, AP. Bayuseno, I Nyoman Jujur, Robin Novriansyah, Darmanto,, Hartanto Prawibowo, P. W. Anggoro, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.