References
- M. Dassisti, A. Giovannini, P. Merla, M. “Chimienti, H. Panetto, Hybrid production-system control-architecture for smart manufacturing”. In On the Move to Meaningful Internet Systems. OTM 2017 Workshops: Confederated International Workshops, EI2N, FBM, ICSP, Meta4eS, OTMA 2017 and ODBASE Posters 2017, Rhodes, Greece, October 23–28, 2017, Revised Selected Papers, Springer International Publishing, pp. 5–15, 2018.
- A.F. Buckhorst, L. Grahn, R.H. Schmitt, “Decentralized holonic control system model for line-less mobile assembly systems”. Robotics and Computer-Integrated Manufacturing, 75, 102301, 2022.
- D.H. Tohma, A.K. Hamoudi, “Design of adaptive sliding mode controller for uncertain pendulum system”. Eng. Technol. J, vol.39, pp. 355–369, 2021.
- Z.T. Jabur, L.M. Dawood, “Analysis of information flow for job-shop production system”. Eng. Technol. J, vol, 33(1), pp. 223–236, 2015.
- J. Roa, J.F. Jimenez, G. Zambrano-Rey. “Directive mode for the semi-heterarchical control architecture of a flexible manufacturing system”. IFAC-Papers OnLine, vol. 52(10), pp. 19–24, 2019.
- C. Wolfsgruber. “Informatization in Production Planning and Control a Simulation based Evaluation of the Impacts in Flow Shop Production Systems”. Ph.D. thesis, University of Technology, Graz, 2016.
- A.R. Boccella, P. Centobelli, R. Cerchione, T. Murino, R. Riedel. “Evaluating centralized and heterarchical control of smart manufacturing systems in the era of Industry 4.0”. Applied Sciences, vol. 10(3), pp. 755, 2020.
- N. Zbib, C. Pach, Y. Sallez, D. Trentesaux, “Heterarchical production control in manufacturing systems using the potential fields concept”. Journal of Intelligent Manufacturing, vol. 23, pp. 1649–1670, 2012
- J.F. Jimenez, A. Bekrar, G. Zambrano-Rey, D. Trentesaux, P. Leitão. “Pollux: a dynamic hybrid control architecture for flexible job shop systems”. International Journal of Production Research, vol. 55(15), pp. 4229–4247, 2017.
- C. Pach, T. Berger, T. Bonte, D. Trentesaux. “ORCA-FMS: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling”. Computers in Industry, vol. 65(4), pp. 706–720, 2014.
- S.R. Gonzalez, G.M. Zambrano, I.F. Mondragon. “Semi-heterarchical architecture to AGV adjustable autonomy within FMSs”. IFAC-Papers OnLine, vol. 52(10), pp. 7–12, 2019.
- D. Trentesaux, C. Pach, A. Bekrar, Y. Sallez, T. Berger, T. Bonte, J. Barbosa. “Benchmarking flexible job-shop scheduling and control systems”. Control Engineering Practice, vol. 21(9), pp. 1204–1225, 2013.
- M.W. Sari, I.B. Dharma, A.E. Tontowi, “Integrated Production System on Social Manufacturing: A Simulation Study”. Management Systems in Production Engineering, vol. 30(3), pp. 230–237, 2022.
- A. Ma, A. Nassehi, C. Snider. “Anarchic manufacturing: implementing fully distributed control and planning in assembly”. Production & Manufacturing Research, vol. 9(1), pp. 56–80, 2021.
- J. Huckert. “Analysis and evaluation of multi-agent systems for digital production planning and control”. Ph.D. thesis, Technical University of Kaiserslautern, Germany, 2021.
- N. Ghazi, G.Z. Rey, A. Bekrar, D. Trentesaux, M. Tadjine. “A preliminary study on integrating operation flexibility within semi-heterarchical FMS control”. International Conference on Industrial Engineering and Systems Management (IESM) pp. 1310–1317. IEEE, 2015.
- S. Mayer, C. Arnet, D. Gankin, C. Endisch. “Standardized framework for evaluating centralized and decentralized control systems in modular assembly systems”. In Proc. IEEE international conference on systems, man and cybernetics (SMC), pp. 113–119, 2019.
- R. Glawar, F. Ansari, C. Kardos, K. Matyas, W. Sihn. “Conceptual design of an integrated autonomous production control model in association with a prescriptive maintenance model (PriMa)”. Procedia CIRP, 80, pp. 482–487, 2019
- T.T. Mezgebe, G. Demesure, H. Bril El Haouzi, R. Pannequin, A. Thomas. “CoMM: a consensus algorithm for multiagent-based manufacturing system to deal with perturbation”. The International Journal of Advanced Manufacturing Technology, vol. 105, pp. 3911–3926, 2019.
- M.A. Dittrich, S. Fohlmeister. Cooperative multi-agent system for production control using reinforcement learning. CIRP Annals, vol. 69(1), pp. 389–392, 2020.
- G. Guizzi, S. Vespoli, A. Grassi, L.C. Santillo. “Simulation-based performance assessment of a new job-shop dispatching rule for the semi-heterarchical industry 4.0 architecture”. In 2020 Winter Simulation Conference (WSC) pp. 1664–1675. IEEE, 2020.
- M.C. May, L. Kiefer, A. Kuhnle, N. Stricker, G. Lanza. “Decentralized multi-agent production control through economic model bidding for matrix production systems”. Procedia Cirp, vol. 96, pp. 3–8, 2021.
- J.B. Didden, Q.V. Dang, I.J. Adan. “A semi-decentralized control architecture for high-mix-low-volume factories in Industry 4.0”. Manufacturing Letters, vol. 30, pp. 11–14, 2021.
- A.J. Ebufegha. “Decentralized Scheduling Using the Multi-Agent System Approach for Smart Manufacturing Systems: Investigation and Design”. Ph.D. thesis, University of Calgary, Canada, 2023.
- D.K. Ismayyir, L.M. Dawood, M.M.H. AL-Khafaji, (in press), “Modelling and control architectures of production systems: literature review”. In: The 4th al. – Noor international conference for science and technology, 4NICST2022, on August,17–18, Istanbul, Turkey, 2022.
- E. Salatiello, S. Vespoli, G. Guizzi, A. Grassi. “Long-Sighted Dispatching Rules for Manufacturing Scheduling Problem in I4. 0 Decentralized Approach”. Available at SSRN 447092, 2023.
- S.L.L. Wynn, T. Boonraksa, P. Boonraksa, W. Pinthurat, B. Marungsri. “Decentralized energy management system in microgrid considering uncertainty and demand response”. Electronics, vol. 12(1), pp. 237, 2023.
- H. Zhao, H. Wang, B. Niu, X. Zhao, N. Xu. “Adaptive fuzzy decentralized optimal control for interconnected nonlinear systems with unmodeled dynamics via mixed data and event driven method”. Fuzzy Sets and Systems, 474, 108735. 2024.
- D. Chen, K. Zhang, Y. Wang, X. Yin, Z. Li, D. Filev. “Commu-nication-Efficient Decentralized Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise Control”. IEEE Transactions on Intelligent Vehicles. 2024.