References
- E.L. Boland, R. Shine, N. Kelly, C.A. Sweeney, and P.E. McHugh, “A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents,” Ann. Biomed. Eng., vol. 44, no. 2, pp. 341-356, 2016, doi: 10.1007/s10439-015-1413-5.
- D. Garlotta, “A Literature Review of Poly ( Lactic Acid ),” J. Polym. Environ., vol. 9, no. 2, pp. 63-84, 2002, doi: 10.1023/A:1020200822435.
- R. van Lith et al., “3D-Printing Strong High-Resolution Antioxidant Bioresorbable Vascular Stents,” Adv. Mater. Technol., vol. 1, no. 9, pp. 1-7, 2016, doi: 10.1002/admt.201600138.
- M.F. De Oliveira, L.C.E. Silva, and M.G. De Oliveira, “Bioprinting 3D printed bioresorbable nitric oxide-releasing vascular stents,” Bioprinting, vol. 22, no. December 2020, p. e00137, 2021, doi: 10.1016/j.bprint.2021.e00137.
- R.D. Alexy and D.S. Levi, “Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent,” vol. 2013, 2013.
- A.W. Martinez and E.L. Chaikof, “Microfabrication and Nanotechnology in Stent Design,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 76, no. October 2009, pp. 211–220, 2012, doi: 10.1007/s11103-011-9767-z.Plastid.
- N. Muhammad, “Laser Micromachining of Coronary Stents for Medical Applications,” University of Manchester, 2012.
- N. Grabow, M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, and K.-P. Schmitz, “Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization,” J. Biomech. Eng., vol. 127, no. 1, pp. 25-31, 2005, doi: 10.1115/1.1835349.
- A. J. Guerra and J. Ciurana, “Effect of fi bre laser process on in-vitro degradation rate of a polycaprolactone stent a novel degradation study method,” Polym. Degrad. Stab., vol. 142, pp. 42-49, 2017, doi: 10.1016/j.polymdegradstab.2017.05.028.
- M. Lalegani Dezaki, M. K. A. Mohd Ariffin, and S. Hatami, “An overview of fused deposition modelling (FDM): research, development and process optimisation,” Rapid Prototyp. J., vol. 27, no. 3, pp. 562-582, 2021, doi: https://doi.org/10.1108/RPJ-08-2019-0230.
- R.F. Quero, G. Domingos da Silveira, J.A. Fracassi da Silva, and D.P. de Jesus, “Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices,” Lab Chip, vol. 21, no. 19, pp. 3715-3729, 2021, doi: 10.1039/D1LC00518A.
- S. Deng, J. Wu, M. D. Dickey, Q. Zhao, and T. Xie, “Rapid Open-Air Digital Light 3D Printing of Thermoplastic Polymer,” Adv. Mater., vol. 31, no. 39, pp. 1-7, 2019, doi: 10.1002/adma.201903970.
- J. Fei et al., “Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review,” Macromol. Rapid Commun., vol. 44, no. 18, p. 2300211, Sep. 2023, doi: https://doi.org/10.1002/marc.202300211.
- H.O.T. Ware et al., “High-speed on-demand 3D printed bioresorbable vascular scaffolds,” Mater. Today Chem., vol. 7, pp. 25-34, 2018, doi: 10.1016/j.mtchem.2017.10.002.
- S.K. Misra et al., “3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite,” Adv. Healthc. Mater., pp. 1-14, 2017, doi: 10.1002/adhm.201700008.
- H. Jia, S.Y. Gu, and K. Chang, “3D printed self-expandable vascular stents from biodegradable shape memory polymer,” Adv. Polym. Technol., vol. 37, no. 8, pp. 3222-3228, 2018, doi: 10.1002/adv.22091.
- T. Qiu, W. Jiang, P. Yan, L. Jiao, and X. Wang, “Development of 3D-Printed Sulfated Chitosan Modified Bioresorbable Stents for Coronary Artery Disease,” Front. Bioeng. Biotechnol., vol. 8, no. May, pp. 1-12, 2020, doi: 10.3389/fbioe.2020.00462.
- C. Schmidleithner and D.M. Kalaskar, “Stereolithography,” in 3D Printing, Intechopen, 2018, pp. 3-22.
- C. Mendes-Felipe, J. Oliveira, I. Etxebarria, J.L. Vilas-Vilela, and S. Lanceros-Mendez, “State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies,” Adv. Mater. Technol., vol. 4, no. 3, pp. 1-16, 2019, doi: 10.1002/admt.201800618.
- S.C. Ligon et al., “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev., vol. 117, no. 15, pp. 10212-10290, 2017, doi: 10.1021/acs.chemrev.7b00074.
- W. Zhu et al., “Rapid continuous 3D printing of customizable peripheral nerve guidance conduits,” Mater. Today, vol. 21, no. 9, pp. 951-959, 2018, doi: 10.1016/j.mattod.2018.04.001.
- J. Liu, L. Cui, and D. Losic, “Graphene and graphene oxide as new nanocarriers for drug delivery applications,” Acta Biomater., vol. 9, no. 12, pp. 9243-9257, 2013, doi: 10.1016/j.actbio.2013.08.016.
- M. Daniele, “Graphene in neurosurgery : the beginning of a new era,” vol. 10, pp. 615–625, 2015.
- K. Liao, Y. Lin, C. Macosko, and C. Haynes, “Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts,” ACS Appl ied Mater. Interfaces, vol. 3, no. 7, pp. 2607-2615, 2011, doi: 10.1021/am200428v.
- P. Prabhakaran and K.-S. Lee, “Photo-polymerization,” in Functional Polymers, Polymers and Polymeric Composites: A Reference Series, M. A. J. Mazumder, S. H., and A.-A. A, Eds. Springer Nature Switzerland AG, 2019, pp. 1-53.
- P. Hu et al., “Conjugated Bifunctional Carbazole-Based Oxime Esters: Efficient and Versatile Photoinitiators for 3D Printing under One- and Two-Photon Excitation,” ChemPhotoChem, vol. 4, no. 3, pp. 224-232, 2020, doi: 10.1002/cptc.201900246.
- H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, “Photo-curing 3D printing technique and its challenges,” Bioact. Mater., vol. 5, no. 1, pp. 110-115, 2020, doi: 10.1016/j.bioactmat.2019.12.003.
- B. Steyrer, P. Neubauer, R. Liska, and J. Stampfl, “Visible light photoinitiator for 3D-printing of tough methacrylate resins,” Materials (Basel)., vol. 10, no. 12, pp. 1-11, 2017, doi: 10.3390/ma10121445.
- B. Zeng et al., “Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells,” Toxicol. Vitr., vol. 72, no. October 2020, 2021, doi: 10.1016/j.tiv.2021.105103.
- C.C. Wang, J.Y. Chen, and J. Wang, “The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing,” J. Biomed. Mater. Res. – Part A, vol. 110, no. 1, pp. 204-216, 2022, doi: 10.1002/jbm.a.37277.
- J. Guit et al., “Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography,” ACS Appl. Polym. Mater., vol. 2, no. 2, pp. 949-957, 2020, doi: 10.1021/acsapm.9b01143.
- K.S. Lee and J.H. Lee, “Hybrid Thermal Recovery Using Low-Salinity and Smart Waterflood,” Hybrid Enhanc. Oil Recover. using Smart Waterflooding, pp. 129-135, 2019, doi: 10.1016/b978-0-12-816776-2.00006-4.
- F. Wajdi, I. Kusumaningtyas, A.R. Wijaya, and A.E. Tontowi, “Graphene synthesis in obtaining a safe particle size in blood circulation system,” Res. J. Pharm. Technol., vol. 14, no. 1, pp. 270-274, 2021, doi: 10.5958/0974-360x.2021.00048.2.
- J.H. Sandoval, R.B. Wicker, J.H. Sandoval, and R.B. Wicker, “Functionalizing stereolithography resins : effects of dispersed multi-walled carbon nanotubes on physical properties,” Rapid Prototyp. J., vol. 12, no. 5, pp. 292-303, 2006, doi: 10.1108/13552540610707059.
- Y. Arao and M. Kubouchi, “High-rate production of few-layer graphene by high-power probe sonication,” Carbon N. Y., vol. 95, pp. 802-808, 2015, doi: 10.1016/j.carbon.2015.08.108.
- Z. Feng, Y. Li, C. Xin, D. Tang, W. Xiong, and H. Zhang, “Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing,” J. Carbon Res., vol. 5, no. 25, pp. 1-16, 2019, doi: 10.3390/c5020025.
- R.G. Pauck and B.D. Reddy, “Computational analysis of the radial mechanical performance of PLLA coronary artery stents,” Med. Eng. Phys., vol. 37, no. 1, pp. 7-12, 2015, doi: 10.1016/j.medengphy.2014.09.014.
- G. Gonzalez et al., “Development of 3D printable formulations containing CNT with enhanced electrical properties,” Polymer (Guildf)., vol. 109, pp. 246-253, 2017, doi: 10.1016/j.polymer.2016.12.051.