Have a personal or library account? Click to login
3D Printed Stent from Graphene-Polyethylene Glycol Diacrylate Using Digital Light Processing Technique Cover

3D Printed Stent from Graphene-Polyethylene Glycol Diacrylate Using Digital Light Processing Technique

By: Farid Wajdi and  Alva Edy Tontowi  
Open Access
|Nov 2024

References

  1. E.L. Boland, R. Shine, N. Kelly, C.A. Sweeney, and P.E. McHugh, “A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents,” Ann. Biomed. Eng., vol. 44, no. 2, pp. 341-356, 2016, doi: 10.1007/s10439-015-1413-5.
  2. D. Garlotta, “A Literature Review of Poly ( Lactic Acid ),” J. Polym. Environ., vol. 9, no. 2, pp. 63-84, 2002, doi: 10.1023/A:1020200822435.
  3. R. van Lith et al., “3D-Printing Strong High-Resolution Antioxidant Bioresorbable Vascular Stents,” Adv. Mater. Technol., vol. 1, no. 9, pp. 1-7, 2016, doi: 10.1002/admt.201600138.
  4. M.F. De Oliveira, L.C.E. Silva, and M.G. De Oliveira, “Bioprinting 3D printed bioresorbable nitric oxide-releasing vascular stents,” Bioprinting, vol. 22, no. December 2020, p. e00137, 2021, doi: 10.1016/j.bprint.2021.e00137.
  5. R.D. Alexy and D.S. Levi, “Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent,” vol. 2013, 2013.
  6. A.W. Martinez and E.L. Chaikof, “Microfabrication and Nanotechnology in Stent Design,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 76, no. October 2009, pp. 211–220, 2012, doi: 10.1007/s11103-011-9767-z.Plastid.
  7. N. Muhammad, “Laser Micromachining of Coronary Stents for Medical Applications,” University of Manchester, 2012.
  8. N. Grabow, M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, and K.-P. Schmitz, “Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization,” J. Biomech. Eng., vol. 127, no. 1, pp. 25-31, 2005, doi: 10.1115/1.1835349.
  9. A. J. Guerra and J. Ciurana, “Effect of fi bre laser process on in-vitro degradation rate of a polycaprolactone stent a novel degradation study method,” Polym. Degrad. Stab., vol. 142, pp. 42-49, 2017, doi: 10.1016/j.polymdegradstab.2017.05.028.
  10. M. Lalegani Dezaki, M. K. A. Mohd Ariffin, and S. Hatami, “An overview of fused deposition modelling (FDM): research, development and process optimisation,” Rapid Prototyp. J., vol. 27, no. 3, pp. 562-582, 2021, doi: https://doi.org/10.1108/RPJ-08-2019-0230.
  11. R.F. Quero, G. Domingos da Silveira, J.A. Fracassi da Silva, and D.P. de Jesus, “Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices,” Lab Chip, vol. 21, no. 19, pp. 3715-3729, 2021, doi: 10.1039/D1LC00518A.
  12. S. Deng, J. Wu, M. D. Dickey, Q. Zhao, and T. Xie, “Rapid Open-Air Digital Light 3D Printing of Thermoplastic Polymer,” Adv. Mater., vol. 31, no. 39, pp. 1-7, 2019, doi: 10.1002/adma.201903970.
  13. J. Fei et al., “Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review,” Macromol. Rapid Commun., vol. 44, no. 18, p. 2300211, Sep. 2023, doi: https://doi.org/10.1002/marc.202300211.
  14. H.O.T. Ware et al., “High-speed on-demand 3D printed bioresorbable vascular scaffolds,” Mater. Today Chem., vol. 7, pp. 25-34, 2018, doi: 10.1016/j.mtchem.2017.10.002.
  15. S.K. Misra et al., “3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite,” Adv. Healthc. Mater., pp. 1-14, 2017, doi: 10.1002/adhm.201700008.
  16. H. Jia, S.Y. Gu, and K. Chang, “3D printed self-expandable vascular stents from biodegradable shape memory polymer,” Adv. Polym. Technol., vol. 37, no. 8, pp. 3222-3228, 2018, doi: 10.1002/adv.22091.
  17. T. Qiu, W. Jiang, P. Yan, L. Jiao, and X. Wang, “Development of 3D-Printed Sulfated Chitosan Modified Bioresorbable Stents for Coronary Artery Disease,” Front. Bioeng. Biotechnol., vol. 8, no. May, pp. 1-12, 2020, doi: 10.3389/fbioe.2020.00462.
  18. C. Schmidleithner and D.M. Kalaskar, “Stereolithography,” in 3D Printing, Intechopen, 2018, pp. 3-22.
  19. C. Mendes-Felipe, J. Oliveira, I. Etxebarria, J.L. Vilas-Vilela, and S. Lanceros-Mendez, “State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies,” Adv. Mater. Technol., vol. 4, no. 3, pp. 1-16, 2019, doi: 10.1002/admt.201800618.
  20. S.C. Ligon et al., “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev., vol. 117, no. 15, pp. 10212-10290, 2017, doi: 10.1021/acs.chemrev.7b00074.
  21. W. Zhu et al., “Rapid continuous 3D printing of customizable peripheral nerve guidance conduits,” Mater. Today, vol. 21, no. 9, pp. 951-959, 2018, doi: 10.1016/j.mattod.2018.04.001.
  22. J. Liu, L. Cui, and D. Losic, “Graphene and graphene oxide as new nanocarriers for drug delivery applications,” Acta Biomater., vol. 9, no. 12, pp. 9243-9257, 2013, doi: 10.1016/j.actbio.2013.08.016.
  23. M. Daniele, “Graphene in neurosurgery : the beginning of a new era,” vol. 10, pp. 615–625, 2015.
  24. K. Liao, Y. Lin, C. Macosko, and C. Haynes, “Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts,” ACS Appl ied Mater. Interfaces, vol. 3, no. 7, pp. 2607-2615, 2011, doi: 10.1021/am200428v.
  25. P. Prabhakaran and K.-S. Lee, “Photo-polymerization,” in Functional Polymers, Polymers and Polymeric Composites: A Reference Series, M. A. J. Mazumder, S. H., and A.-A. A, Eds. Springer Nature Switzerland AG, 2019, pp. 1-53.
  26. P. Hu et al., “Conjugated Bifunctional Carbazole-Based Oxime Esters: Efficient and Versatile Photoinitiators for 3D Printing under One- and Two-Photon Excitation,” ChemPhotoChem, vol. 4, no. 3, pp. 224-232, 2020, doi: 10.1002/cptc.201900246.
  27. H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, “Photo-curing 3D printing technique and its challenges,” Bioact. Mater., vol. 5, no. 1, pp. 110-115, 2020, doi: 10.1016/j.bioactmat.2019.12.003.
  28. B. Steyrer, P. Neubauer, R. Liska, and J. Stampfl, “Visible light photoinitiator for 3D-printing of tough methacrylate resins,” Materials (Basel)., vol. 10, no. 12, pp. 1-11, 2017, doi: 10.3390/ma10121445.
  29. B. Zeng et al., “Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells,” Toxicol. Vitr., vol. 72, no. October 2020, 2021, doi: 10.1016/j.tiv.2021.105103.
  30. C.C. Wang, J.Y. Chen, and J. Wang, “The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing,” J. Biomed. Mater. Res.Part A, vol. 110, no. 1, pp. 204-216, 2022, doi: 10.1002/jbm.a.37277.
  31. J. Guit et al., “Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography,” ACS Appl. Polym. Mater., vol. 2, no. 2, pp. 949-957, 2020, doi: 10.1021/acsapm.9b01143.
  32. K.S. Lee and J.H. Lee, “Hybrid Thermal Recovery Using Low-Salinity and Smart Waterflood,” Hybrid Enhanc. Oil Recover. using Smart Waterflooding, pp. 129-135, 2019, doi: 10.1016/b978-0-12-816776-2.00006-4.
  33. F. Wajdi, I. Kusumaningtyas, A.R. Wijaya, and A.E. Tontowi, “Graphene synthesis in obtaining a safe particle size in blood circulation system,” Res. J. Pharm. Technol., vol. 14, no. 1, pp. 270-274, 2021, doi: 10.5958/0974-360x.2021.00048.2.
  34. J.H. Sandoval, R.B. Wicker, J.H. Sandoval, and R.B. Wicker, “Functionalizing stereolithography resins : effects of dispersed multi-walled carbon nanotubes on physical properties,” Rapid Prototyp. J., vol. 12, no. 5, pp. 292-303, 2006, doi: 10.1108/13552540610707059.
  35. Y. Arao and M. Kubouchi, “High-rate production of few-layer graphene by high-power probe sonication,” Carbon N. Y., vol. 95, pp. 802-808, 2015, doi: 10.1016/j.carbon.2015.08.108.
  36. Z. Feng, Y. Li, C. Xin, D. Tang, W. Xiong, and H. Zhang, “Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing,” J. Carbon Res., vol. 5, no. 25, pp. 1-16, 2019, doi: 10.3390/c5020025.
  37. R.G. Pauck and B.D. Reddy, “Computational analysis of the radial mechanical performance of PLLA coronary artery stents,” Med. Eng. Phys., vol. 37, no. 1, pp. 7-12, 2015, doi: 10.1016/j.medengphy.2014.09.014.
  38. G. Gonzalez et al., “Development of 3D printable formulations containing CNT with enhanced electrical properties,” Polymer (Guildf)., vol. 109, pp. 246-253, 2017, doi: 10.1016/j.polymer.2016.12.051.
DOI: https://doi.org/10.2478/mspe-2024-0053 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 555 - 562
Submitted on: Dec 1, 2023
Accepted on: Oct 1, 2024
Published on: Nov 9, 2024
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Farid Wajdi, Alva Edy Tontowi, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.