Have a personal or library account? Click to login
Decision Support System for the Design Process of Apatite Biopolymer Composite Parts Cover

Decision Support System for the Design Process of Apatite Biopolymer Composite Parts

Open Access
|Nov 2024

References

  1. ISO/ASTM TR 52916:2022 “Additive manufacturing for medical − Data − Optimized medical image data”, 2022.
  2. P. Celard, E.L. Iglesias, J.M. Sorribes-Fdez, R. Romero, A. Seara Vieira and L. Borrajo. “A survey on deep learning applied to medical images: from simple artificial neural networks to generative models”. Neural Comput & Applic., vol. 35, pp. 2291-2323, 2023.
  3. M. Bahraminasab. “Challenges on optimization of 3D-printed bone scaffolds”. BioMed Eng OnLine., vol. 19, 69, 2020.
  4. H.I. Park, J.H. Lee, and S.J. Lee. “The comprehensive on-demand 3D bio-printing for composite reconstruction of mandibular defects”. Maxillofac Plast Reconstr Surg, vol. 44, 31, 2022.
  5. B. Zhang, Y. He, J. Liu, J. Shang, Ch. Chen, T. Wang, M. Chen, Y. Li, G. Gong, J. Fang, Z. Zhao and J. Guo. “Advancing collagen-based biomaterials for oral and craniofacial tissue regeneration”. Collagen & Leather, vol. 5, 14, 2023.
  6. L. Sukhodub, A. Panda, K. Dyadyura, I. Pandova and T. Krenicky. “The design criteria for biodegradable magnesium alloy implants.” MM Science Journal, 2018, 2018 (December), pp. 2673-2679, 2020.
  7. A. Panda, K. Dyadyura, J. Valíček, M. Harničárová, M. Kušnerová, T. Ivakhniuk, L. Hrebenyk, O. Sapronov, V. Sotsenko, P. Vorobiov, V. Levytskyi, A. Buketov and I. Pandová. “Ecotoxicity Study of New Composite Materials Based on Epoxy Matrix DER-331 Filled with Biocides Used for Industrial Applications”. Polymers, vol. 14, no. 16, 3275, 2022.
  8. F. Camacho-Alonso, C. Martínez-Ortiz, L. Plazas-Buendía, A.M. Mercado-Díaz, C. Vilaplana-Vivo, J.A. Navarro, A.J. Buendía, J.J. Merino and Y. Martínez-Beneyto. “Bone union formation in the rat mandibular symphysis using hydroxyapatite with or without simvastatin: effects on healthy, diabetic, and osteoporotic rats”. Clin Oral Invest, vol. 24, pp. 1479-1491, 2020.
  9. F. Ramzan, A. Salim and I. Khan. “Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine”. Stem Cell Rev and Rep, vol. 19, pp. 1615-1634, 2023.
  10. L. Sukhodub, A. Panda, L. Suchodub, M. Kumeda, K. Dyadyura and I. Pandova. “Hydroxyapatite and zinc oxide based two-layer coating, deposited on Ti6Al4V substrate.” MM Science Journal, 2019 (December), pp. 3494-3499, 2019.
  11. S.V.S. Prasad, B.Ch. Rao, M.K. Rao, K.R. Kumar, S.D.V. Prasad, Ch. Ramesh. “Medical image segmentation using an optimized three-tier quantum convolutional neural network trained with hybrid optimization approach”. Mul-timed Tools Appl, vol. 83, pp. 38083-38108, 2024.
  12. N. Jitani, B.J. Singha, G. Barman, A. Talukdar, R. Sarmah and D.K. Bhattacharyya. “Medical image segmentation using automated rough density approach”. Multimed Tools Appl., vol. 83, pp. 39677-39705, 2024.
  13. S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz and D. Terzopoulos. “Image Segmentation Using Deep Learning: A Survey”. IEEE Trans Pattern Anal Mach Intell, vol. 44, no. 7, pp. 3523-3542, 2022.
  14. S. Iqbal, A.N. Qureshi, J. Li, and T. Mahmood. “On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks”. Arch Computat Methods Eng., vol. 30, pp. 3173-3233, 2023.
  15. N. Thakur, P. Kumar and A. Kumar. “A systematic review of machine and deep learning techniques for the identification and classification of breast cancer through medical image modalities”. Multimed Tools Appl., vol. 83, pp. 35849-35942, 2024.
  16. M. Safari, A. Fatemi and L. Archambault. “MedFusionGAN: multimodal medical image fusion using an unsupervised deep generative adversarial network”. BMC Med Imaging, vol. 23, 203, 2023.
  17. A.S. Lundervold and A. Lundervold. “An overview of deep learning in medical imaging focusing on MRI”. Z Med Phys., vol. 29, no. 2, pp. 102-127, 2019.
  18. V, Nainamalai, M. Lippert, H. Brun, O.J. Elle and R.P. Kumar. “Local integration of deep learning for advanced visualization in congenital heart disease surgical planning”. Intell Based Med., vol. 6, 100055, 2022.
  19. M. Akazawa and K. Hashimoto. “Artificial intelligence in gynecologic cancers: current status and future challenges – a systematic review”. Artif Intell Med., vol. 120, 102164, 2021.
  20. V.S. de Siqueira, M.M. Borges, R.G. Furtado, C.N. Dourado and R.M. da Costa. “Artificial intelligence applied to support medical decisions for the automatic analysis of echo-cardiogram images: a systematic review”. Artif Intell Med., vol. 120, 102165, 2021.
  21. T. Fernando, H. Gammulle, S. Denman, S. Sridharan and C. Fookes. “Deep learning for medical anomaly detection – a survey”. ACM Comput Surv., vol. 54, no. 7, 2021.
  22. J. Chen J, K. Li, Z. Zhang, K. Li and P.S. Yu. “A survey on applications of artificial intelligence in fighting against COVID-19”. ACM Comput Surv., vol 54, no. 8, 2021.
  23. M. Sah and C. Direkoglu. “A survey of deep learning methods for multiple sclerosis identification using brain mri images”. Neural Comput Appl., vol. 34, no. 10, pp. 7349-7373, 2022.
  24. M.A. Abdou. “Literature review: efficient deep neural networks techniques for medical image analysis. Neural Comput Appl., vol. 34, no. 8, pp. 5791-5812, 2022.
  25. A. Kaur, L. Kaur and A. Singh. “GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets”. Neural Comput & Applic., vol. 33, pp. 14991-15025, 2021.
  26. M.S. Hossain, G.M. Shahriar, M.M.M. Syeed, M.F. Uddin, M. Hasan, S. Shivam and S. Advani. “Region of interest (ROI) selection using vision transformer for automatic analysis using whole slide images”. Sci Rep., vol. 13, 11314, 2023.
  27. I. Pandová, M. Rimár, A. Panda, J. Valíček, M. Kušnerová and M. Harničárová. “A study of using natural sorbent to reduce iron cations from aqueous solutions.” International Journal of Environmental Research and Public Health, 17 (10), 3686, 2020.
  28. A. Panda, V.M. Anisimov, V.V. Anisimov, K. Dyadyura and I. Pandova. “Increasing of wear resistance of linear block-polyurethanes by thermal processing methods.” MM Science Journal, 2021, October, pp. 4731-4735, 2021.
  29. A. Panda, M. Prislupčák and I. Pandová. “Progressive technology diagnostics and factors affecting machinability.” Applied Mechanics and Materials, 616, pp. 183-190, 2014.
  30. R. Cantor and T.A. Curtis. “Prosthetic management of edentulous mandibulectomy patients. Part II. Clinical procedures”. J. Prosthet. Dent., vol. 25, pp. 546-555, 1971.
  31. R. Cantor and T.A. Curtis. “Prosthetic management of edentulous mandibulectomy patients. Part III. Clinical evaluation”. J. Prosthet. Dent., vol. 25, pp. 670-678, 1971.
  32. D. Dmitrishin, G. Lesaja, I. Skrinnik and A. Stokolos. “A new method for finding cycles by semilinear control”. Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 383, no. 16, pp. 1871-1878, 2019.
DOI: https://doi.org/10.2478/mspe-2024-0052 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 548 - 554
Submitted on: May 1, 2024
Accepted on: Oct 1, 2024
Published on: Nov 9, 2024
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Anton Panda, Kostiantyn Dyadyura, Dmitriy Dmitrishin, Andrey Smorodin, Igor Prokopovich, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.