References
- J. Jeston and J. Nelis, Business Process Management, Practical guidelines to successful implementations, First Edit. Elsevier Ltd., 2006.
- J. Y. Jung, J. Bae, and L. Liu, “Hierarchical clustering of business process models,” Int. J. Innov. Comput. Inf. Control, vol. 5, no. 12, pp. 4501-4511, 2009.
- S. Mamoghli, V. Goepp, and V. Botta-Genoulaz, “An approach for the management of the risk factors impacting the model-based engineering methods in ERP projects,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1206-1211, 2018, doi: 10.1016/j.ifacol.2018.08.426.
- P. Ruivo, B. Johansson, S. Sarker, and T. Oliveira, “The relationship between ERP capabilities, use, and value,” Comput. Ind., vol. 117, 2020, doi: 10.1016/j.compind.2020.103209.
- S. Chopra, Supply chain Management; strategy, planning, and operation, Fifth ed. Pearson, 2013.
- R. Sarno, H. Ginardi, E. W. Pamungkas, and D. Sunaryono, “Clustering of ERP business process fragments,” Proceeding – 2013 Int. Conf. Comput. Control. Informatics Its Appl. “Recent Challenges Comput. Control Informatics”, IC3INA 2013, pp. 319-324, 2013, doi: 10.1109/IC3INA.2013.6819194.
- H. Ordonez, J. Torres-jimenez, C.C. Id, A. Ordonez, E. Herrera-viedma, and G. Maldonado-martinez, “A business process clustering algorithm using incremental covering arrays to explore search space and balanced Bayesian information criterion to evaluate quality of solutions,” pp. 1-27, 2019.
- S. Israilova, A. Mukhanova, and T. Yesikova, “Business Process Verification With Integrated Simulation Methods : Focus On ‘Customer Engagement,’” vol. 99, no. 21, pp. 5112-5124, 2021.
- J. A. Fitzsimmons and M. J. Fitzsimmons, Service management; operation, strategy, information technology, Seventh. McGraw-hill, 2011.
- E. Prasteyo, Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab, Pertama. ANDI Yogyakarta, 2014.
- Suyanto, Data Mining untuk Klasifikasi dan Klasterisasi Data, Revisi. Informatika Bandung, 2019.
- A. Liberati et al., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration, vol. 62, no. 10. 2009. doi: 10.1016/j.jclinepi.2009.06.006.
- Vos viewer, “Center for Science and Technology Studies.” Leiden University, Leiden, The Netherland, 2023. [Online]. Available: https://www.vosviewer.com/
- H. Ahn and T. W. Chang, “A similarity-based hierarchical clustering method for manufacturing process models,” Sustain., vol. 11, no. 9, 2019, doi: 10.3390/su11092560.
- M.K. Chen, C.M. Wu, L.S. Chen, and Y.P. Huang, “The influential factors of taiwan smes’ clustering keystone business strategy – the perspective of business ecosystem using fahp,” Sustain., vol. 13, no. 18, 2021, doi: 10.3390/su131810304.
- J.M. Müller, O. Buliga, and K.I. Voigt, “Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0,” Technol. Forecast. Soc. Change, vol. 132, no. December 2017, pp. 2-17, 2018, doi: 10.1016/j.techfore.2017.12.019.
- P. Holzmann, R.J. Breitenecker, E.J. Schwarz, and P. Gregori, “Business model design for novel technologies in nascent industries: An investigation of 3D printing service providers,” Technol. Forecast. Soc. Change, vol. 159, no. July, p. 120193, 2020, doi: 10.1016/j.techfore.2020.120193.
- E. Hariyanti, A. Djunaidy, and D. Siahaan, “Information security vulnerability prediction based on business process model using machine learning approach,” Comput. Secur., vol. 110, p. 102422, 2021, doi: 10.1016/j.cose.2021.102422.
- M.R.C.I, “Process modeling: technological innovation to control the risk for perioperative positioning injury,” vol. 74, no. Suppl 6, pp. 4-7, 2021.
- B.A. Tama and M. Comuzzi, “An empirical comparison of classification techniques for next event prediction using business process event logs,” Expert Syst. Appl., vol. 129, pp. 233-245, 2019, doi: 10.1016/j.eswa.2019.04.016.
- A. Haeri, K. Rezaie, and M.S. Amalnick, “Developing a novel approach to assess the efficiency of resource utilisation in organisations: A case study for an automotive supplier,” Int. J. Prod. Res., vol. 52, no. 10, pp. 2815-2833, 2014, doi: 10.1080/00207543.2013.839891.
- A. Haeri and S.H. Iranmanesh, “Using classification techniques to recognize patterns of resource utilization in organizations,” 2015, doi: 10.1177/0954405415584897.
- V.S.W. Lam, “Equivalences of BPMN processes,” pp. 189-204, 2009, doi: 10.1007/s11761-009-0048-5.
- J. Koszela, “Methods of structural analysis of business processes,” vol. 04016, pp. 1-8, 2018.
- M.M. Hassan, M.S. Alenezi, and R.Z. Good, “Spatial pattern analysis of manufacturing industries in Keraniganj, Dhaka, Bangladesh,” GeoJournal, vol. 85, no. 1, pp. 269-283, 2020, doi: 10.1007/s10708-018-9961-5.
- T. Wuest, C. Irgens, and K.D. Thoben, “An approach to monitoring quality in manufacturing using supervised machine learning on product state data,” J. Intell. Manuf., vol. 25, no. 5, pp. 1167-1180, 2014, doi: 10.1007/s10845-013-0761-y.
- G. San-Payo, J.C. Ferreira, P. Santos, and A.L. Martins, “Machine learning for quality control system,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 11, pp. 4491-4500, 2020, doi: 10.1007/s12652-019-01640-4.
- Y. Jin, S. Ji, L. Liu, and W. Wang, “Business model innovation canvas: a visual business model innovation model,” Eur. J. Innov. Manag., vol. 25, no. 5, pp. 1469-1493, 2022, doi: 10.1108/EJIM-02-2021-0079.
- A.L. Rodrigues, F.B.G. Torres, E.A.P. Santos, and M.R. Cubas, “Process-modeling-technological-innovation-to-control-the-risk-for-perioperative-positioning-injury – Modelagem-de-processos-inovao-tecnolgica-paracontrole-do-risco-de-leso-por-posicionamentoperioperatrioRevista-Bra.pdf.” 2021.
- L. Sneller, A Guide to ERP: Benefits, implementation & trends. 2014.
- Badan Pusat Statistik, Klasifikasi Baku Lapangan Usaha Indonesia (KBLI) 2020. 2020.
- S. Sinulingga, Perencanaan dan Pengendalian Produksi, 2nd ed. 2013.