Have a personal or library account? Click to login
Application of Modern Machine Diagnostic Systems to Improve Safety in the Underground Mining Process Cover

Application of Modern Machine Diagnostic Systems to Improve Safety in the Underground Mining Process

Open Access
|Nov 2024

References

  1. Brodny J., Tutak M., Applying computational fluid dynamics in research on ventilation safety during underground hard coal mining: A systematic literature review. Process Safety and Environmental Protection 151, 2021, pp. 373-400.
  2. Brodny J., Tutak M., Challenges of the polish coal mining industry on its way to innovative and sustainable development J. Clean. Prod. 2022, vol. 375, Article 134061
  3. Brady B.H., Brown E.T.: Rock mechanics for underround mining. 3rd ed., Springer, 2006.
  4. Abramov, I.; Bozek, P.; Nikitin, Y.; Abhramov, A.; Sosnovich, E.; Stollmann, V. Diagnostics of electrical drives. In The 18th International Conference on Electrical Drives and Power Electronics. EDPE 2015. The High Tatras, Slovakia, pp. 364-367.
  5. Galvin J.M.: Ground Engineering. Principles and Practices of Underground Coal Mining. Springer International Publishing 2016.
  6. Peng S.S., Longwall Mining, 3rd edition, Taylor & Francis Group, London, UK, 2020.
  7. Harron P. E., Heshmat M., Imbaby S., Ibrahim A.: Current Theories and Concepts for the Determination of Roof Loading over the Hydraulic Supports in Longwall Faces. Journal of Petroleum and Mining Engineering 2022.
  8. Witek M., Influence of strength parameters of floor rocks on the work charateristic of the powered roof support in the longwall. PhD Thesis, 2014 Katowice.
  9. Litvinenko, V.S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, vol. 29, pp. 1521-1541. https://doi.org/10.1007/s11053-019-09568-4.
  10. Sánchez, F., Hartlieb, P. Innovation in the Mining Industry: Technological Trends and a Case Study of the Challenges of Disruptive Innovation. Mining, Metallurgy & Exploration 2020, vol. 37, pp. 1385-1399. https://doi.org/10.1007/s42461-020-00262-1.
  11. Brodny, J.; Tutak, M. Analysis of the diversity in emissions of selected gaseous and particulate pollutants in the European Union countries. Journal of Environmental Management 2019, vol. 231, pp. 582-5951.
  12. Brodny, J.; Tutak, M., The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. Journal of Cleaner Production 2021, vol. 279, 123641.
  13. Singh, V., Gangsar, P., Porwal, R. et al. Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review. J Intell Manuf 2023, vol. 34, pp. 931-960. https://doi.org/10.1007/s10845-021-01861-5.
  14. Atul, K., Dheeraj, K., Singh, U.P., Gupta, P.S., Development of an Automated System for Continuous Monitoring of Powered Roof Support in Longwall Panel. Journal of Coal Science and Engineering, 2010, 16(4), pp. 337-340.
  15. Bartelmus W., Condition Monitoring of Open Cast Mining Machinery. 2006, Wroclaw: Wroclaw University of Technology Press.
  16. Brodny, J., Tutak, M., Michalak, M., A Data Warehouse as an Indispensable Tool to Determine the Effectiveness of the Use of the Longwall Shearer. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_36.
  17. Surucu O., Gadsden S.A., Yawney J., Condition monitoring using machine learning: A review of theory, applications, and recent advances. Expert Systems with Applications, 2023, No 221.
  18. Angeles, E.; Kumral, M. Optimal Inspection and Preventive Maintenance Scheduling of Mining Equipment. J. Fail. Anal. Prev. 2020, vol. 20, pp. 1408-1416.
  19. Bołoz, Ł.; Biały, W. Automation and Robotization of Underground Mining in Poland. Appl. Sci. 2020, vol. 10, 7221. https://doi.org/10.3390/app10207221
  20. Fernandez, O.; Labib, A.W.; Walmsley, R.; Petty, D.J. A Decision Support Maintenance Management System: Development and Implementation. Int. J. Qual. Reliab. Manag. 2003, vol. 20, pp. 965-979.
  21. Peng B., Wan S., Bi Y., Xue B., Zhang M., Automatic Feature Extraction and Construction Using Genetic Programming for Rotating Machinery Fault Diagnosis. IEEE Transactions on Cybernetics, vol. 51, vol. 10, pp. 4909-4923, Oct. 2021, doi: 10.1109/TCYB.2020.3032945.
  22. Biały W., Prostański D., Korbiel T., Kuric I. „Weibull distribution as a criterion of emergency levels”. Acta Montanistica Slovaca, (2024) Volume 29 (1), pp. 216-226.
  23. Biały, W., Prostański, D. & Bołoz, Ł. Selection of longwall shearers based on the results of research on the mechanical properties of coal. Sci Rep 14, 18606 (2024). https://doi.org/10.1038/s41598-024-69178-w pp. 1-11
  24. Brodny J., Analysis of operation of new construction of the frictional joint with the resistance wedge. Archives of Mining Sciences 2012, No 57, pp. 209-227.
  25. Brodny J., Determining the working characteristic of a friction joint in a yielding support. Archives of Mining Sciences, 2010, No 55, pp. 733-7462010.
  26. Brodny, J.; Tutak, M.; John A., Analysis of influence of types of rocks forming the goaf with caving on the physical parameters of air stream flowing through these gob and adjacent headings. Mechanika 2017, vol. 24, pp. 43-49.
  27. Brodny J., Tutak M., Assessing the energy security of European Union countries from two perspectives – A new integrated approach based on MCDM methods. Appl. Energy 2023, vol. 347, 121443
  28. Brodny J., Alszer S., Krystek J., Tutak M., Availability analysis of selected mining machinery. Arch. Control Sci. 2017, vol. 27, pp. 197-209.
  29. Demirkan, D.C.; Duzgun, H.S.; Juganda, A.; Brune, J.; Bogin, G. Real-Time Methane Prediction in Underground Longwall Coal Mining Using AI. Energies 2022, No 15, 6486.
  30. Brodny J., Tests of friction joints in mining yielding supports under dynamic load. Archives of Mining Sciences, 2011, No 6, pp. 303-318.
  31. Cao, X.G.; Zhang, M.Y.; Gong, Y.R.; Jia, X.L.; Zhang, R.Y., Maintenance Decision Method Considering Inspection of Mining Equipment. Int. J. Metrol. Qual. Eng. 2021, No 12, 21.
  32. Chimunhu P., Topal E., Ajak A. D., Asad W., A review of machine learning applications for underground mine planning and scheduling. Resour. Pol., 2022, vol. 77, Article 102693.
  33. Tretten, P.; Karim, R. Enhancing the Usability of Maintenance Data Management Systems. J. Qual. Maint. Eng. 2014,20, pp. 290-303.
  34. Hashmi A. S., Ahmad T., Big Data Mining: Tools & Algorithms. Int. J. Recent Contrib. from Eng. Sci. IT, 2016, vol. 4, no. 1, pp. 36-40.
  35. Kosinar, M., Kuric, I. Monitoring possibilites of CNC machine tools accuracy.1st International Conference on Quality and Innovation in Engineering and Management (QIEM), Cluj Napoca, ROMANIA, pp. 115-118.
  36. Szweda S., Identyfikacja parametrów charakteryzujących obciążenie sekcji obudowy zmechanizowanej spowodo-wane dynamicznych oddziaływaniem górotworu. Zeszyty Naukowe Politechniki Śląskiej, 2004.
  37. Angeles Pasco, E. Equipment Management towards Sustainable Mining. Masters Thesis, McGill University, Montreal, QC, Canada, 2020.
  38. Hamid, T. Moving Predictive Maintenance in Mining from Theory to Practice. Aust. Min. 2020.
  39. Gericke B.L., Sushko A.E., Gericke P.B., Efremenkov A.B., Digital technologies used in technical diagnostics assessment of technical condition maintenance and repair of mining machines and equipment. Journal of Physics: Conference Series, 2021, vol. 2052, no. 1, pp. 012016.
  40. Biliński A.: Metoda doboru obudowy ścianowych wyrobisk wybierkowych i chodnikowych do warunków pola eksploatacyjnego. Prace naukowe – Monografie CMG KOMAG z.11, Gliwice 2005
  41. Szweda S., Szyguła M., Mazurek K., Czynniki wpływające na postać konstrukcyjną i parametry techniczne sekcji ścianowej obudowy zmechanizowanej, cz. 1. Wydawnictwo Instytutu Techniki Górniczej KOMAG, 2016.
DOI: https://doi.org/10.2478/mspe-2024-0044 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 474 - 483
Submitted on: May 1, 2024
Accepted on: Oct 1, 2024
Published on: Nov 9, 2024
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Konrad Trzop, Ivan Kuric, Jarosław Brodny, Magdalena Tutak, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.